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Abstract—The smart grid benefits and suffers from smart
meter data. Proper use of massive data can improve energy
services but may raise privacy concerns. For example, user energy
consumption profiling, a classic method, can identify energy con-
sumption patterns based on the collected load profiles from users.
Thus, the privacy of these individual load profiles needs to be
protected. However, most of the existing works focus on data
transmission and calculation privacy, and often require additional
computation, communication, or platform construction costs.
In contrast, noise-injection-based data source privacy-protecting
works can avoid such additional costs and provide theoretical
differential privacy (DP) guarantee. This paper theoretically ana-
lyzes noise-injection-based user profiling mechanisms in terms of
both privacy protection and accuracy. Specifically, we establish
the privacy-accuracy trade-off. We then propose an optimal user
energy consumption pattern estimation method for heterogeneous
noise-injection-based data. Finally, we design a valid information
ratio-based pricing scheme for noisy data that is independent
of downstream tasks and easy to implement. Numerical studies
based on field data confirm the effectiveness of our theoretical
results.

Index Terms—Privacy-preserving, user profiling, differential
privacy.

I. INTRODUCTION

THE WIDESPREAD deployment of smart meters in the
residential sector generates massive amounts of real-time

data that are essential for power distribution and demand-side
management. These data have greatly improved consumer-
oriented decision-making, such as demand response [1],
electricity theft detection [2], and clustering-based user
profiling [3].
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Clustering-based user profiling is one of the most impact-
ful applications that can extract energy consumption patterns
from users’ load profile data. These extracted patterns fur-
ther facilitate the provision of customized services. While
these customized services can enhance economic efficiency,
the clustering-based user profiling approach necessitates a sub-
stantial amount of smart meter data from individuals, thereby
giving rise to privacy concerns. To tackle this challenge,
most privacy-preserving methods, like federated learning [4]
and secure multi-party computation [5], focus on protect-
ing privacy for data transmission and calculation. Although
these approaches do not compromise user profiling accuracy,
they are often highly customized with additional computation,
communication, or hardware burdens.

Noise-injection-based privacy mechanisms [6], on the other
hand, only add noise to the original data and are therefore
additional resource-free, though they imprecisely profile users.
Fig. 1 illustrates the noise injection mechanisms for user load
profiles. Specifically, directly adopting original load profiles
for user profiling will suffer from privacy leakage. The pri-
vacy mechanisms inject noises into the load profiles to provide
a privacy guarantee. However, different scales of noise pro-
vide different levels of privacy guarantee, and also lead to
differentiated impreciseness in user profiling. For example,
a small noise injection has little impact on the user pro-
filing accuracy, but the privacy guarantee level is also low.
On the contrary, a large injected noise achieves a higher
level of privacy guarantee at the cost of reduced user profil-
ing accuracy. How to trade off such user profiling accuracy
and the privacy protection level is an urgent and impor-
tant issue in practice, which influences both the willingness
of end users’ data sharing, and the effectiveness of user
profiling.

To quantify such induced impreciseness, this paper the-
oretically analyzes how the noise-injection-based mecha-
nisms affect clustering-based user profiling accuracy and
provides privacy-accuracy trade-off results. Moreover, we
facilitate a privacy-preserving data market selling load profiles
with heterogeneous privacy mechanisms. From the perspec-
tive of data demanders, we propose a systematic approach
to optimally utilize the heterogeneous data in the market
for user profiling. On the other hand, from the market
operator’s perspective, we suggest a valid information ratio-
based pricing scheme for the data commodities in the mar-
ket, which is both task- and data-independent and easy to
implement.
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Fig. 1. Privacy Preserving for User Load Profiles.

A. Related Works

Clustering-based user profiling is a well-investigated
research topic in the electricity sector. Just to name a few,
McLoughlin et al. [7] combine three clustering methods:
k-means, k-medoid and self-organizing maps to obtain the best
profiling results based on smart meter data. Wang et al. [8]
design a clustering model of consumption behavior dynam-
ics based on fast search and density peak detection.
Haben et al. [9] propose a finite mixture model-based clus-
tering exploiting relevant energy consumption attributes of
key time periods. Zhang et al. [10] design a stability index
for choosing clustering algorithms and a priority index for
determining the cluster’s priority rank to improve the clus-
tering performance. Kwac et al. [11] design a household
electricity segmentation method to identify policy-relevant
consumption behavior. Teeraratkul et al. [12] propose a shape-
based load cluster method utilizing dynamic time warping
to capture hidden patterns in the regular consumer behavior.
Huang et al. [13] propose a federated shift-invariant dictionary
learning clustering approach to enable distributed and compu-
tationally efficient user profiling. Different advanced clustering
algorithms have been adopted to capture users’ consump-
tion patterns, and now the clustered user profiles have been
widely applied to improve the effectiveness of power system
operation from many aspects, such as electricity demand fore-
cast [14], operation of energy sharing [15], electric vehicle
charging [16], electricity price design [17], etc. In contrast,
we focus on the privacy protection for user profiling.

With the growing concern over user privacy leakage, var-
ious approaches are proposed to guarantee users’ data pri-
vacy and security in the electricity sector. For example,
Halder et al. [18] design algorithms to enable privacy-
preserving thermal inertial load management for the load
serving entity. Li et al. [19] propose a privacy-preserving
multi-subset data aggregation in the smart grid to ensure
users’ privacy. Abdallah and Shen [20] design a lightweight
lattice-based homomorphic privacy-preserving data aggrega-
tion scheme for the smart grid. Baza et al. [21] design
a privacy-preserving charging-station-to-vehicle and vehicle-
to-vehicle energy trading scheme to protect the privacy
of EV charging information using blockchain technology.
Wan et al. [22] explore the privacy-preserving fair exchange
scheme for vehicle-to-grid also based on blockchain technol-
ogy. Lee and Choi [23] propose a privacy-preserving energy
management method in smart electric vehicle charging sta-
tions based on federated reinforcement learning. Except for the

above works about general privacy preservation in the power
system, only a few works specifically investigate privacy pro-
tection for user profiling. Wang et al. [3] design a federated
learning approach for electricity consumption pattern extrac-
tion in a distributed way to protect user privacy. Jia et al. [24]
propose a privacy-preserving distributed clustering-based user
profiling based on accelerated average consensus. These two
closely related works mainly focus on privacy protection dur-
ing the user profile calculation process. We further this line
of research by considering the noise-injection-based privacy
protection for the data source of user profiling.

Most existing works focus on privacy-preserving computa-
tional procedures utilizing blockchain, homomorphic encryp-
tion, and accelerated average consensus. Although these
approaches barely affect calculation accuracy, they often incur
additional computational costs, agent communication costs, or
platform construction costs (like blockchain systems). More
importantly, these methods are often tailored to a specific task
and often cannot be applied to other tasks. Privacy preserva-
tion for data sources—by directly changing the original data
(i.e., by injecting noises)—is simpler and more intuitive than
data transmission and computation privacy protection. It avoids
additional costs and can be directly applied to different compu-
tation scenarios, but may introduce computational inaccuracy.
Differential privacy (DP) [25] measures how well these meth-
ods protect privacy. The smart grid community has adopted
this notion for power line obfuscation [26], non-intrusive load
monitoring [27], time series data protection [28], load profile
data synthesis [29] and storage control [30]. In practice, DP
can be viewed as a trade-off between privacy guarantee and
data accuracy. Soria-Comas et al. [31] replace conventional
DP and design the individual differential privacy to guarantee
the privacy for individuals and provide more accurate data.
Inspired by the idea of the trade-off between privacy and accu-
racy, we further this line of research by providing a theoretical
DP guarantee for noise-injection-based mechanisms to conduct
user profiling, which helps quantify how these mechanisms
affect user profiling performance.

Data valuation and pricing are enablers for the power
grid digitalization, recently receiving significant attention. Just
to name a few, Wang et al. [32] evaluate the value of
information by improving the efficiency of solar power plant
operation. Wang et al. [33] also measure the value of wind
power forecasting information for improving economic dis-
patch performance. Yu et al. [34] design an information market
framework and propose an information valuation model to
help price photovoltaic-related data in power system opera-
tion problems. These works mainly focus on analyzing the
value of data in improving the effectiveness of a specific power
grid task. In contrast, we consider pricing the user load profile
data with privacy guarantees to improve a class of downstream
tasks. With the increasing public privacy concern, some recent
works also examine the value of data with privacy guarantees.
Ghosh and Roth [35] initiate the study of auction markets
for private data in two cases: when the data analyst has a
fixed accuracy goal and has a fixed budget. The results are
extended and generalized by exploring approximately optimal
data pricing schemes [36], [37], [38], which can be viewed as
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a trade-off between performance and computational efficiency.
In contrast to this line of research focusing on auction, we seek
to facilitate the privacy-preserving data market selling hetero-
geneous noisy load profiles from both data pricing and data
utilization perspectives.

B. Our Contributions

Our major contributions can be summarized as follows:
• Privacy-Accuracy Trade-off for DP User Profiling Center

Estimation: We theoretically analyze the privacy-accuracy
trade-off between the injected noise to load profiles and
the estimation accuracy of the user profile center based
on the resulting noisy data, which provides valuable
guidelines for deciding the noise-injection level to user
profiles.

• Optimal User Profile Estimation With Noisy Data: We
design the optimal user profile estimation approach for
minimizing variance and tail probability based on data
perturbed by heterogeneous noise-injection-based mech-
anisms.

• Price Design for DP Noisy Load Profiles: We propose a
valid information ratio-based price scheme for DP noisy
load profiles that is easy to implement. We also address
the advantages of our designed pricing scheme in terms
of task independency and data independency.

Our paper proceeds as follows: Section II introduces user
load profile privacy-preserving mechanisms. Section III the-
oretically describes the tension between privacy protection
level and user profile estimation accuracy. Using DP load pro-
files with heterogeneous mechanisms, Section IV designs the
optimal user profile estimation approach to minimize the esti-
mation error. Section V proposes the pricing scheme for DP
noisy data. Section VI conducts the numerical study. Finally,
Section VII concludes our paper. All the necessary proofs are
deferred to the Appendix.

II. PRIVACY-PRESERVING FOR LOAD PROFILES

In this section, we introduce two widely adopted noise-
injection-based mechanisms, i.e., the Laplace mechanism and
the Gaussian mechanism, to protect the privacy of user load
profiles. We then theoretically characterize the differential
privacy level that these mechanisms can guarantee.

Specifically, a user load profile is denoted by

d = (d1, d2, . . . , dT) ∈ R
T , (1)

where dt represents the user’s energy consumption at time t,
and T denotes the length of the profile. To protect the pri-
vacy of load profile d, we consider injecting different kinds of
noises into the original load profile.

Mathematically, we denote a noise-injection-based mech-
anism as B :RT −→ R

T , which is a mapping function
from a T-dimensional vector (the original load profile) to a
T-dimensional vector (the noisy load profile).

For the convenience of subsequent definitions of DP, we
first define the distance metric function dis(d1, d2) measur-
ing the similarity between two load profiles d1 and d2.
Generally, the distance metric function dis can be the l1 norm,

i.e., dis(d1, d2) = ‖d1−d2‖1, or the l2 norm, i.e., dis(d1, d2) =
‖d1 − d2‖2.

We follow the classical choice [6] to define the distance
metrics function dis separately for the Laplace mechanism and
the Gaussian mechanism in the subsequent parts. Based on the
distance metric function, we can define the neighbor profiles:

Definition 1 (Neighbor Profiles): For a predefined threshold
� > 0 and a given distance metric function dis, if two load
profiles d1, d2 ∈ R

T satisfy:

dis(d1, d2) ≤ �,

then d1 and d2 are neighbor profiles.
In this definition, � > 0 is a predefined sensitivity param-

eter. In our context, we follow the convention [6] and take
� = 1.

A. Laplace Mechanism With ε-DP Guarantee

We first introduce the Laplace mechanism, which injects
the Laplacian noise into the load profiles. Before diving
into the details of this mechanism, we introduce an impor-
tant notion, ε-differential privacy (ε-DP) [25], which can
rigorously characterize the level of privacy protection.

The ε-DP describes the inability to differentiate two similar
datasets (user load profiles in our setting). Mathematically,
consider a mapping function B (d) from a load profile d to
R

T , the ε-DP is defined as:
Definition 2 (ε-DP [25]): For any two neighbor load pro-

files d1, d2 ∈ R
T with distance metric function dis(d1, d2)

being the l1-norm, and any subset Y ⊆ R
T , if there exists a

constant ε > 0, such that the mapping function B : RT −→ R
T

satisfies:

Pr
[
B (d1) ⊆ Y

]

Pr
[
B (d2) ⊆ Y

] ≤ eε, (2)

where Pr[·] represents the probability of an event, then the
mapping function (mechanism) B achieves ε-DP.

The parameter ε characterizes the privacy protection level of
a mechanism. In the definition of ε-DP, a smaller ε indicates
a lower probability of differentiating two similar load profiles.
Intuitively, it means that it is more difficult to identify a user
through the load profiles, which guarantees a higher privacy
protection level.

We provide a more specific interpretation of ε as follows.
For any two neighbor load profiles with noise-injection-based
mechanisms under ε-DP guarantee, the maximal probability P
of successfully distinguishing each other is as follows:

P = eε

1 + eε
. (3)

This probability P is within [ 1
2 , 1). Specifically, as ε

increases, the probability P approaches 1, which indicates a
very high probability of accurately distinguishing each other,
and thus a low privacy protection level. In contrast, when ε

is very small (approaching 0), the probability P approaches
1
2 , which is close to the random guess, indicating a very high
privacy protection level.

The Laplace mechanism is a standard approach to achieve
ε-DP by injecting the Laplacian noise into the original load
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profiles. We provide the details of the Laplace mechanism
below, and advise readers who are already familiar with
the Laplace mechanism to skip this subsection and proceed
directly to Section II-B.

Lemma 1 (Laplace Mechanism, [6, Th. 3.6]): For any given
load profile d ∈ R

T , if a mechanism B satisfies:

B (d) = d + L(λ), (4)

where L(λ) = (X1, X2, . . . , XT) ∈ R
T is a T-dimensional vec-

tor with each entry Xt, t ∈ {1, 2, . . . , T}, being i.i.d. Laplacian
random variable, and the probability density function (pdf )
hL(x) of each Xt is characterized by parameter λ>0 as follows:

hL(x) = 1

2λ
e− |x|

λ , (5)

then B achieves 1
λ

-DP.1

This theorem indicates that, with a larger λ, the Laplacian
noise becomes larger, offering a privacy protection guarantee
with a higher level.

Based on this theorem, we submit that, to achieve a desired
privacy protection level ε, the parameter λ of the Laplacian
noise should satisfy λ = 1

ε
.

For the convenience of mathematical expression, we use
B L(λ) to denote a Laplace mechanism with parameter λ.

B. Gaussian Mechanism With (ε,δ)-DP Guarantee

In practice, pure ε-DP in Definition 2 is often too strict,
and only very limited mechanisms can achieve ε-DP. A more
general differential privacy notion is (ε, δ)-differential privacy
((ε, δ)-DP) with the following definition:

Definition 3 ((ε, δ)-DP [25]): For any two neighbor load
profiles d1, d2 ∈ R

T with distance metric function dis(d1, d2)

being the l2 norm, and any subset Y ⊆ R
T , if there exists

constants ε, δ > 0, such that the mapping function B : RT −→
R

T satisfies:

Pr
[
B (d1) ⊆ Y

] ≤ eεPr
[
B (d2) ⊆ Y

]+ δ, (6)

where Pr[·] represents the probability of an event, then the
mechanism B achieves (ε, δ)-DP.

Compared with the definition of ε-DP, the requirement of
(ε, δ)-DP is relatively lower with a relax ratio δ. A smaller δ

indicates a stronger privacy guarantee, and when δ = 0, the
(ε, δ)-DP is specified to pure ε-DP. The definition of (ε, δ)-
DP enables more privacy protection mechanisms, e.g., the
Gaussian mechanism. We provide the details of the Gaussian
mechanism below, and again advise readers who are already
familiar with the Gaussian mechanism to skip this subsection
and proceed directly to Section II-C.

Lemma 2 (Gaussian Mechanism, [6, Th. A.1]): For any
given load profile d ∈ R

T , if a mechanism B satisfies:

B (d) = d + G(σ ), (7)

1Actually, the specific form of privacy protection level ε is �
λ and is cor-

related to the sensitivity factor �. For the simplicity of expression, we adopt
the common choices [6] to set � = 1. Note that the value of � is a constant
and does not affect the analysis in this paper.

TABLE I
APPLICATION SCENARIOS OF NOISE-INJECTION-BASED MECHANISM

where G(σ ) = (X1, X2, . . . , XT) ∈ R
T is a T-dimensional

vector with each entry Xt, t ∈ {1, 2, . . . , T}, being i.i.d. zero-
mean Gaussian random variable, and the probability density
function (pdf ) hN(x) of each Xt is characterized by parameter
σ > 0 as follows:

hN(x) =
(

2πσ 2
)− 1

2
exp

(
− x2

2σ 2

)
, (8)

then B achieves
√

1.25/δσ−1, δ)-DP for any δ > 0.
Note that, δ is a predefined parameter according to our need.

A larger σ leads to a smaller σ−1√1.25/δ, indicating a higher
privacy protection level.

Based on this theorem, we can derive that, to achieve
an (ε, δ)-DP, the injected Gaussian noise should be with a
standard deviation σ = ε−1√1.25/δ.

For the convenience of mathematical expression, we use
B G(σ ) to denote a Gaussian mechanism with standard devi-
ation parameter σ .

Remark: Note that, in practice, our designed noise-injection
mechanism is conducted when the user load profile data are
shared with the third-party data demanders (instead of the data
collection stage). It guarantees the user privacy protection dur-
ing all the subsequent processes, including data transmission,
storage and computation. Since the data are noise-free dur-
ing collection, our noise-injection-based mechanism does not
influence the original smart meter services for end users, like
power billing.

C. Application Scenarios

Although with DP guarantees, the noise-injection-based
mechanisms will introduce certain noises to the original load
profiles, which is unsuitable for scenarios with paramount
data accuracy requirements. We summarize the applicable and
inapplicable application scenarios of the noise-injection-based
mechanism in Table I. The noise-injection-based mechanism
has more potential for applications where accuracy is not
paramount, and sacrificing a small amount of accuracy for
these scenarios is welcome in exchange for a high level
of privacy protection [39]. These scenarios include demand
response, economic operation of distribution system operators
(DSOs), user profiling, customized price design for end users,
etc. In contrast, for those scenarios with strong data accuracy
requirements, like power billing, load forecasting, and electric-
ity theft detection, customized privacy protection approaches
with perfect accuracy are more favorable.
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III. PRIVACY-ACCURACY TRADE-OFF FOR USER

PROFILING

Although privacy-preserving mechanisms can provide cer-
tain DP guarantees, the injected noise will inevitably affect
the accuracy of user load profiling. In this section, we the-
oretically characterize such impacts of privacy-preserving
mechanisms on user profiling accuracy. And then, we construct
the key results of the privacy-accuracy trade-off for different
mechanisms.

A. Clustering With Multiple Noisy Data

Consider N original load profiles D = {d(1), . . . , d(N)} that
belong to a single user type. We assume all load profiles in D
are randomly and independently drawn from the same distribu-
tion. Each single profile is denoted by d(i) = (d(i)

1 , . . . , d(i)
T ).

Now we consider the scenario that all the N load pro-
files are protected by the noise-injection-based mechanisms.
Specifically, the noisy load profiles satisfy:

d̃
(i) = d(i) + η(i),∀i ∈ {1, 2, . . . , N}, (9)

where η(i) denotes the vector of injected random noise, i.e.,
η(i) = (η

(i)
1 , . . . , η

(i)
T ). All the injected noises (i.e., η

(i)
t , i =

1, . . . , N, t = 1, . . . , T) for different load profiles and different
t are i.i.d. random variables.

With these noisy load profiles, we seek to estimate the typ-
ical pattern of this user type, i.e., the cluster center. For most
clustering algorithms [46], the cluster center is estimated by
the average of all data belonging to this cluster. That is, the
estimated cluster center ŝ = (ŝ1, . . . , ŝT) is calculated as
follows:

ŝ = 1

N

N∑

i=1

d̃
(i) = 1

N

N∑

i=1

(
d(i) + η(i)

)
. (10)

Now we evaluate the accuracy of the estimated cluster center
ŝ under different noise-injection-based mechanisms.

B. Cluster With Gaussian Mechanism

We first analyze the case with the Gaussian mechanism
B G(σ ). The following fact can be derived by standard
mathematical manipulation:

Fact 1: Given N randomly and independently sampled load
profiles d(1), . . . , d(N) ∈ R

T where d(i) = (d(i)
1 , . . . , d(i)

T ), if all
the data are protected by the Gaussian mechanism B G(σ ),
then the mean and variance of the estimated cluster center
ŝ = (ŝ1, . . . , ŝT) satisfy:

E
[
ŝt
] = μt,∀t ∈ T , (11)

Var
(
ŝt
) = 1

N

(
Var(dt) + σ 2

)
,∀t ∈ T , (12)

where d = (d1, . . . , dT) denotes the random variable charac-
terizing the distribution of load profile samples (i.e., d(1), . . . ,
d(N)) with mean μ = (μ1, . . . , μT), the set T ≡ {1, 2, . . . , T},
and Var(dt) denotes the variance of entry dt.

This fact indicates that ŝ is an unbiased estimation to the
true cluster center μ = (μ1, . . . , μT), but with an estimation
variance. With more load profiles for estimation (larger N),
the estimation variance can be effectively reduced. A smaller

Gaussian noise (smaller σ 2) also contributes to a smaller
estimation variance.

Except for the moment statistics, to better evaluate the
estimation ŝ, a commonly adopted metric is the tail proba-
bility [47], i.e.,

Pr
[||ŝ − μ||1 ≥ k

]
. (13)

The tail probability characterizes the chance that the esti-
mation ŝ deviates from the mean μ by more than a certain
range k, which is an effective metric for describing the risk of
large estimation error.

Before analyzing the tail probability for the estimation ŝ,
we first introduce a useful characterization as follows:

Definition 4 (Sub-Gaussian Random Variable): A univari-
ate random variable X is a sub-Gaussian random variable if
there exists a positive constant K, such that the tail probability
of X satisfies:

Pr[|X − E[X]| ≥ z] ≤ 2exp
(
−z2/K2

)
,∀z ≥ 0. (14)

Intuitively, the pdf of a sub-Gaussian variable has a “light
tail”. When the deviation z increases, the corresponding proba-
bility decreases rapidly at the rate of at least O(e−z2

). A typical
sub-Gaussian distribution is the Gaussian distribution.

We assume dt is a sub-Gaussian random variable for each t.
This is a practical assumption since d denotes the distribution
of user load profiles in a cluster. Therefore, load profiles highly
deviating from the cluster center will be divided into the other
clusters with high probability in practice. Further, the physical
power limit also makes d bounded, i.e., ∃M > 0 such that
sup ‖d‖1 ≤ M. And bounded random variables are all sub-
Gaussian random variables [47]. In addition, we can easily
verify that the injected Gaussian noises are sub-Gaussian.

Based on the sub-Gaussian properties of both the origi-
nal load profiles and the injected noises, we can derive the
following fact by characterizing the tail probability of ŝ:

Fact 2: Given N randomly and independently sampled load
profiles d(1), . . . , d(N) ∈ R

T where d(i) = (d(i)
1 , . . . , d(i)

T ), if
all the data are protected by the Gaussian mechanism B G(σ ),
then for any estimation error range k > 0, the tail probabilities
of the estimated cluster center ŝ = (ŝ1, . . . , ŝT) satisfy:

Pr
[|ŝt − μt| ≥ k

] ≤ 2 exp

(
−N

2

k2

σ 2 + σ̃ 2
t

)
,∀t ∈ T , (15)

Pr
[

1

T
||ŝ − μ||1 ≥ k

]
≤ 2

T∑

t=1

exp

(
−N

2

k2

σ 2 + σ̃ 2
t

)
, (16)

where T ≡ {1, 2, . . . , T}, the parameter σ̃ 2
t is the proxy

variance [47] of dt defined as follows:

σ̃t = arg min
v

v :E
[
eλ(dt−μt)

]
≤ e

λ2v2
2 ,∀λ ∈ R, (17)

and d = (d1, . . . , dT) denotes the random variable characteriz-
ing the distribution of load profile samples (i.e., d(1), . . . , d(N))

with mean μ = (μ1, . . . , μT).
This fact indicates that, when the required estimation

error range k linearly increases, the tail probability decreases
rapidly at the rate of O(exp(−k2)). Further, with a larger
sample size N, the tail probability decreases exponentially
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fast. Additionally, a larger Gaussian noise (larger σ) also
contributes to a larger tail probability.

Based on the analysis of the tail probability, we can
summarize the following theorem to characterize the trade-
off between the privacy protection level and the estimation
accuracy of the cluster center:

Theorem 1 (Privacy-Accuracy Trade-off for Gaussian
Mechanism): For N randomly and independently sampled
load profiles d(1), . . . , d(N) ∈ R

T and any given param-
eters δ, σ > 0, a Gaussian mechanism B G(σ ) achieves
(σ−1

√
1.25δ−1, δ)-DP, and leads to the tail probability of the

cluster center estimation error at the rate of O(Texp(−Nσ−2)).
We can observe that, the parameter σ bridges privacy and

accuracy. Gaussian mechanism with a larger σ achieves a
higher privacy protection level of O(σ−1), but also brings
a larger estimation error of O(exp(−σ−2)). Note that, these
results can be easily extended to the other noise-injection-
based mechanisms which only require the noise distributions
to be sub-Gaussian.

Another important issue that we care about is the mini-
mum required amount of data to achieve the desired estimation
accuracy. Based on Fact 2, we can derive the following
theorem:

Theorem 2 (Sample Complexity of Gaussian Mechanism):
Given the Gaussian mechanism B G(σ ), to guarantee the esti-
mation error smaller than k with probability 1−τ , the required
amount of load profiles N satisfies:

N ≥ 2 ln

(
2T

τ

)
maxt∈T σ̃ 2

t + σ 2

k2
, (18)

where T is the length of load profiles, the set T ≡
{1, 2, . . . , T}, and σ̃ 2

t denotes the proxy variance of load
profiles for entry t.

This theorem indicates that when the length of load profile
T increases, the amount of the required load profiles increases
in O(ln T). To reduce the tail probability τ , the amount of
required load profiles should increase in O(ln(τ−1)). Further,
when the variance σ 2 of the Gaussian noise increases, the
amount of required load profiles increases linearly.

C. Cluster With Laplace Mechanism

Now we consider the Laplace mechanism B L(λ). Similarly,
we can characterize the moment statistics for the cluster center
estimation under the Laplace mechanism:

Fact 3: Given N randomly and independently sampled load
profiles d(1), . . . , d(N) ∈ R

T where d(i) = (d(i)
1 , . . . , d(i)

T ), if
all the data are protected by the Laplace mechanism B (λ),
then the mean and variance of the estimated cluster center
ŝ = (ŝ1, . . . , ŝT) satisfy:

E
[
ŝt
] = μt, ∀t ∈ T , (19)

Var
(
ŝt
) = 1

N

(
Var(dt) + 2λ2

)
, ∀t ∈ T , (20)

where d = (d1, . . . , dT) denotes the random variable charac-
terizing the distribution of load profile samples (i.e., d(1), . . . ,
d(N)) with mean μ = (μ1, . . . , μT), the set T ≡ {1, 2, . . . , T},
and Var(dt) denotes the variance of entry dt.

We can observe that the estimation is also unbiased, and
with an estimation variance linearly increases in λ2.

The key difference between the Laplace mechanism and
the Gaussian mechanism comes from the tail probability.
Intuitively, the Laplacian distribution is not sub-Gaussian, with
a heavier tail decreasing in O(e−z) instead of O(e−z2

). We can
take advantage of this property and derive the tail probability
of the estimation as follows:

Fact 4: Given N randomly and independently sampled load
profiles d(1), . . . , d(N) ∈ R

T where d(i) = (d(i)
1 , . . . , d(i)

T ), if
all the data are protected by the Laplace mechanism B L(λ),
then for any estimation error range k > 0, the tail probabilities
of the estimated cluster center ŝ = (ŝ1, . . . , ŝT) satisfy:

Pr
[|ŝt − μt| ≥ k

] ≤ 2 exp

(
−N

2
Rt

)
,∀t ∈ T , (21)

Pr
[

1

T
||ŝ − μ||1 ≥ k

]
≤ 2

T∑

t=1

exp

(
−N

2
Rt

)
, (22)

where T ≡ {1, 2, . . . , T}, Rt is defined as:

Rt = min

(
k2

4λ2 + σ̃ 2
t

,
k√
2λ

)
,∀t ∈ T , (23)

and σ̃ 2
t denotes the proxy variance of load profiles for entry t.

This result is in a similar form to Fact 2: the tail probability
decreases in O(e−N) with the increasing amount of load pro-
files. Also, a larger λ will increase the tail probability. Based
on these results, we can summarize the following theorems:

Theorem 3 (Privacy-Accuracy Trade-off for Laplace
Mechanism): For N randomly and independently sampled
load profiles d(1), . . . , d(N) ∈ R

T and any given parameters
λ, k > 0, a Laplace mechanism B L(λ) achieves 1

λ
-DP, and

leads to the tail probability of the cluster center estimation
error at the rate of O(Texp(−N(λk + k2)λ−2)).

We can also derive the sample complexity result with the
Laplace mechanism to characterize the required data amount
to achieve the desired estimation accuracy:

Theorem 4 (Sample Complexity of Laplace Mechanism):
Given the Laplace mechanism B L(λ), to guarantee the cluster
center estimation error smaller than k with probability 1 − τ ,
the required amount of load profiles N satisfies:

N ≥ 2 ln

(
2T

τ

)
1

min
(

maxt∈T k2

4λ2+σ̃ 2
t
, k√

2λ

) , (24)

where T is the length of load profiles, the set T ≡
{1, 2, . . . , T}, and σ̃ 2

t denotes the proxy variance of load
profiles for entry t.

This theorem reveals a similar relationship between N and
T as Theorem 2. We can also observe that, when the injected
Laplacian noise and the Gaussian noise have the same vari-
ance, i.e., σ 2 = 2λ2, the tail probability with the Laplace
mechanism is larger than that with the Gaussian mecha-
nism. This coincides with our intuition. Since the tail of
the Laplace distribution is heavier than that of the Gaussian
distribution (e−z v.s. e−z2

), the tail probability of Laplace
mechanism-based load profiles is larger. Note that, these
results can be extended to the other noise-injection-based
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Fig. 2. Privacy-Preserving Data Market.

mechanisms with sub-exponential noise distribution [47] by
minor modifications.

The analysis in this section assumes that all load profiles
are protected by the same mechanism. In the next section, we
will consider a more practical scenario where a data demander
obtains the load profiles with heterogeneous noise-injection-
based mechanisms from the data market.

IV. OPTIMAL USER PROFILING WITH NOISY DATA

In this section, we first introduce the data market for noisy
load profile data trading. And then, we propose the optimal
cluster center estimation approach with heterogeneous data
from the data market.

A. Privacy-Preserving Data Market

Consider a data market that treats users’ load profile data
as commodities, which is illustrated in Fig. 2. Initially, the
data market organizer collects load profiles from data owners.
Then, the data are clustered into different groups character-
izing different energy consumption patterns.2 After that, the
organizer injects different noises into the load profiles for pri-
vacy protection. Finally, different processed data commodities
are sold to the data demanders.

Specifically, the data commodities are diverse in two dimen-
sions, i.e., the belonging patterns and the injected noises.
Denote P as the set of patterns. For each pattern p ∈ P ,
the corresponding load profiles are injected by K + 1 types
of noises, i.e., type 0, 1,. . . , K.3 For convenience, the type
0 noise is the zero noise, but the corresponding noise-free
data cannot be directly sold as commodities in the market due
to privacy concerns. We assume the type k noise mechanism
injected to pattern p data is Gaussian mechanism B G(σk).

2The clustering process is time-consuming when the data volume is very
large. However, this process can be accelerated from various aspects. For
example, we can first sample some data and then conduct the clustering
algorithm on the sampled data. When the sample size is large enough, the
clustering result can be rather accurate. Also, the clustering process can be
accelerated by the decentralized implementation. We can also apply the most
advanced clustering algorithm (e.g., [48], [49]) to accelerate this process,
alleviating the computational burden.

3The key advantage of the designed privacy-preserving data market is its
ability to sell heterogeneous data commodities with different levels of noises
and prices, which can meet the requirement of data demanders with diverse
downstream tasks.

Now consider a data demander that seeks to estimate the
typical energy consumption profile of pattern p users. To
achieve this target, the data demander could purchase several
pattern p data with different injected noises from the data mar-
ket. With K + 1 types of available pattern p data commodities
for sale, the data demander purchases Nk pieces of data with
type k noise for each k. We denote the total amount of bought
data as N = ∑K

k=0 Nk. With these data, the data demander
seeks to estimate the consumption profile of pattern p users
as accurately as possible.

Remark: Note that, although we mainly focus on the
cluster-center estimation, in practice, due to the diversified
downstream tasks that the data demanders need to accomplish,
different data demanders are interested in not only the center
information of user profile, but also different types of statistic
information about users at both group level (group variance,
correlations, distribution, etc.) and individual level (statistic
features of a single piece of user load profile data). Therefore,
by purchasing the data, data demanders can conduct person-
alized data processing based on load profiles to obtain all the
statistics they want.

Essentially, the data market organizer is a trusted center
(trusted server), which is a common assumption in smart gird
privacy protection [50] [51] [52], and this trusted center can
be the power system operator in practice. A trusted center
naturally has access to the raw data and is obliged to prevent
privacy leakage from all third parties. We also note that the
market can also be implemented in a decentralized manner to
protect user privacy better. Specifically, the clustering algo-
rithm can be conducted [3] in a distributed manner to divide
end users into different clusters, relaxing the requirement for
the trusted center. Then, when a data demander requests the
data from a specific cluster, the market organizer randomly
chooses a load profile from a random user in this cluster. After
that, the market organizer injects noises into the data and sells
the noisy data to the data demander.

B. Sample Average Estimation

We first consider the simplest and most frequently adopted
approach to obtain the cluster center estimation, i.e., the
sample average. This approach averages all load profiles to
produce the estimation. Specifically, the estimation of pattern
p’s cluster center ŝ satisfies:

ŝ = 1

N

K∑

k=0

∑

i∈Sk
d̃

(i)
, (25)

where Sk denotes the set of indices of load profiles belonging

to pattern p with mechanism type k. d̃
(i)

denotes the noisy
load profile satisfying:

d̃
(i) = d(i) + η(i),∀i ∈ Sk, (26)

where η(i) denotes the injected Gaussian noise.
Next, we analyze the estimation performance of ŝ. Standard

manipulations similar to Fact 1 yield the following results:
Fact 5: Given K+1 types of load profiles, i.e., type 0, 1, . . . ,

K of a specific pattern p, if the amount and injected noise
mechanism for type k data are Nk and B G(σk), respectively,
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then the mean and variance of sample average estimation ŝ =
(ŝ1, . . . , ŝT) satisfy:

E
[
ŝt
] = μt,∀t ∈ T , (27)

Var
(
ŝt
) = 1

N

(∑K

k=0
αk

(
σ 2

k + Var(dt)
))

,∀t ∈ T , (28)

where T ≡ {1, 2, . . . , T} and αk = Nk∑N
k=1 Nk

. The parameter μt

denotes the expectation of dt, i.e., the real pattern to estimate,
and Var(dt) denotes the variance of dt.

This result directly indicates that the sample average esti-
mation is unbiased, and the estimation variance decreases in
O( 1

N ) with the total amount of data N. Further, we can observe
that the right-hand-side term inside the braces in Eq. (28) is
the weighted average variance, in which the weight αk is
proportional to the corresponding data amount with type k
noise.

However, the sample average estimation will not necessarily
yield the minimum variance with the given data. We illustrate
this issue with a simple example: consider there are two noisy
load profiles A and B with variances of 1 and 10 each. When
we only use A for estimation, the estimation variance is direct
1. After including load profile B, the estimation error becomes
1
2 ( 1

2 × 1 + 1
2 × 10) = 2.75, which is worse than before.

More specifically, the estimation variance will increase
when including a new load profile with variance σ 2 satisfying:

σ 2 ≥ 2
∑

k Nk
(
σ 2

k + Var(dt)
)

∑
k Nk

. (29)

That is, σ 2 is more than double of the weighted average
data variance. This condition can be derived by checking the
derivatives of Var(ŝt) with respect to the number of samples
Nk. It indicates that the load profiles with large noises (about
twice of average) contribute negatively to the estimation.

To improve the sample average estimation, in the subsequent
analysis, we propose the optimal weighted average approach
to minimize the estimation variance and the tail probability,
respectively.

C. Optimal Variance-Minimization Estimation

Intuitively, the load profiles with small noises will contribute
more to estimation than those with large noises. Therefore,
naively averaging different data is not good enough. In con-
trast, offering them different weights and conducting the
weighted average may yield a better estimation.

This inspires us to conduct the following weighted average
estimation for different time slot t separately:

ŝt = 1
∑K

k=0 wt,kNk

K∑

k=0

∑

i∈Sk

wt,kd̃(i)
t ,∀t ∈ T , (30)

where wt,k denotes the weight factor to be designed for
data with type k noise at time t, and T ≡ {1, 2, . . . , T}.
Compared with Eq. (25), the weighted estimation assigns
different weights wt,k to samples with different noises.

With all weights wt,k ≥ 0, ŝt is apparently an unbiased
estimation. The variance satisfies:

Var
(
ŝt
) =

∑K
k=0 Nkw2

t,k

(
σ 2

k + Var(dt)
)

(∑K
k=0 wt,kNk

)2
,∀t ∈ T . (31)

This result can be derived by checking the definition of ŝt

in Eq. (30) and further standard mathematical manipulations.
Now we can choose the optimal weights wt,k to minimize the
variance Var(ŝt):

Theorem 5: Given K + 1 types of load profiles, i.e., type
0, 1, . . . , K of a specific pattern p, if the amount and injected
noise mechanism for type k data are Nk and B G(σk), respec-
tively, then the optimal weights {wt,k, t = 1, 2, . . . , T, k =
0, 1, . . . , K} for minimizing the estimation variance satisfy:

wt,k = 1

Var(dt) + σ 2
k

. (32)

Moreover, with the optimal weights, the minimal variance
satisfies:

Var
(
ŝt
) = 1

N

∑K
k=0 Nk

∑K
k=0

Nk

Var(dt)+σ 2
k

,∀t ∈ T , (33)

where T ≡ {1, 2, . . . , T}, and d = (d1, . . . , dT) denotes the
random variable characterizing the distribution of load profile
samples with variance Var(dt) for each entry t.

It is an interesting result, because the optimal weights are
only related to Var(dt) and the variance of the injected noise.
Load profiles with a larger noise variance σ 2

k lead to a smaller
weight wt,k. And they are independent of the amount of data
Nk. Further, the optimal variance in Eq. (33) is essentially the
weighted harmonic mean, which is always smaller than the
weighted average in Eq. (28).

D. Optimal Tail-Minimization Estimation

In the previous analysis, we proposed the optimal weighted
average approach to obtain the optimal estimation with
minimal variance. Now we consider designing the optimal
estimation with minimal tail probability.

Again, consider the following weighted average estimation,
which is with the same form as Eq. (30):

ŝt = 1
∑K

k=0 wt,kNk

∑K

k=0

∑

i∈Sk
wt,kd̃(i)

t ,∀t ∈ T . (34)

Applying the results of Fact 2, we can derive the tail
probability as follows:

Pr
[|ŝt − μt| ≥ z

] ≤ 2exp

⎛

⎜
⎝

−2
(∑K

k=0 wt,kNk

)2
z2

∑
k Nkw2

t,k

(
σ 2

k + σ̃ 2
t
)

⎞

⎟
⎠,∀t ∈ T ,

where σ̃ 2
t is the proxy variance of dt. Similarly, we can choose

the optimal weights wt,k to minimize the right-hand-side
bound, which yields the following:

Theorem 6: Given K + 1 types of load profiles, i.e., type
0, 1, . . . , K, the amount and injected noise for type k data are
Nk and B G(σk), respectively. The optimal weights {wt,k, t =
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1, 2, . . . , T, k = 0, 1, . . . , K} for minimizing the estimation
tail probability satisfy:

wt,k = 1

σ̃ 2
t + σ 2

k

, (35)

where σ̃ 2
t denotes the proxy variance of load profiles for

entry t.
This result can be derived following the same routine as the
proof for Theorem 5. Compared with the optimal weights for
variance minimization, the only difference is that the variance
Var(dt) is replaced with the proxy variance σ̃ 2

t . Note that, the
analysis with the Laplace mechanism can be derived similarly.

V. DATA PRICING FOR DP USER PROFILES

In this section, we design a pricing scheme for noisy
user load profiles under different mechanisms. Specifically,
we propose a valid information ratio-based practical pricing
approach.

A. Assumptions for Differentially Private Data Pricing

Essentially, the data price can be revealed by the value of
data in improving the performance of downstream tasks [53].
Data with less noise enable more accurate estimation of
user profiles, and more accurate user profiles can further
improve the economic revenue for different tasks, like demand
response (DR) and load forecasting. Before designing the
pricing scheme, we first make an assumption on the tasks:

Assumption 1: For downstream task Q, the task utility
function JQ is a monotonic decreasing function of the user
profiling estimation variance Var(ŝ) = ∑T

t=1 Var(ŝt), denoted
by JQ(Var(ŝ)).

This assumption indicates that larger estimation error of user
profiling leads to less task utility, which is consistent with our
intuition. DR is an effective demand side management method
based on user profiles, and we now provide an example of
DR to justify the assumption. Specifically, we consider two
variants of task utility:

• Accuracy of Potential Load Level: For DR, we are often
concerned about the potential load level [40], which
characterizes users’ capacities of peak load shaving.
Specifically, the potential load level PLLt at time t may
be of the following form:

PLLt = dt − dinflx
t , (36)

where dinflx
t denotes the inflexible load at time t and is

assumed to be known. The potential load level’s estima-
tion accuracy can be considered as the task utility. When
we adopt the mean squared error (MSE)4 to characterize
the estimation accuracy, the task utility becomes,

JQ = −MSE(PLL), (37)

where PLL = (PLL1, PLL2, . . . , PLLT). With the estima-
tion ŝt for energy consumption dt, we can easily derive

4Adopting the other error metrics like mean average error (MAE) won’t
fundamentally influence our subsequent analysis, since we can bridge different
error metrics (sometimes approximately). Hence, if MSE is a function of the
variance Var(ŝ), so do the other error metrics.

the following:

JQ = −MSE(PLL) = −Var
(
ŝ
)
, (38)

which indicates the task utility is linear in Var(ŝ).
• Cost of Economic Dispatch: The shifted load of DR

can contribute to reducing the cost of economic dis-
patch. We also adopt economic dispatch cost with DR
to characterize the task utility:

JQ = −
∑T

t=1
E

(
a(Dt − PLLt)

2 + b(Dt − PLLt)
)
,

where Dt is the aggregated load at time t, a and b
are the quadratic and linear cost coefficients for power
generation. Injecting PLL’s definition yields:

JQ = −aVar
(
ŝ
)+ H, (39)

where H is a constant independent of the estimation ŝ.
We can observe that JQ is also a function of Var(ŝ).

Further, since the load profile ŝ is estimated from dataset
D, we use JQ(Var(ŝ)|D) to demonstrate such a correlation.
Specifically, D includes the data with different noise-injection-
based mechanisms, i.e.,

D = {D0,D1,D2, . . . ,DK}, (40)

and Dk denotes the data from group k protected by homoge-
neous mechanism with variance σ 2

k . The data amount of Dk

is Nk ≥ 0. Also, D0 is defined as the noise-free dataset.
The estimated user profiling can be applied to enhance

the performances of different tasks Q, so the overall revenue
J∗(Var(ŝ)|D) across all tasks satisfies:

J∗(Var
(
ŝ
)|D) =

∑

Q
βQJQ

(
Var

(
ŝ
)|D), (41)

where βQ denotes the ratio indicating the importance of task
Q. For simplicity, we use J∗(D) to represent J∗(Var(ŝ)|D).

Remark: Note that, we use the user profile ŝt to represent
the actual energy consumption dt. This is because user pro-
files are utilized to capture the typical energy consumption
patterns of end users, and are often directly utilized to repre-
sent dt for customized services like DR [54] in practice. For
DR program designers, they often do not have exact energy
consumption information about the users in advance, and need
to complete the design solely based on users’ historical energy
consumption curves. Therefore, using the user profile ŝt to rep-
resent energy consumption dt for guiding the DR program is a
common choice with acceptable performance. Although there
exists a certain gap between dt and ŝt, we can often reduce
such a gap by increasing the number of target clusters output
by the clustering algorithm, which can further improve the
accuracy and benefit customized services.

B. Valid Information Ratio-Based Pricing

Economically, the value of data can be characterized by
the marginal revenue improvement [55], i.e., by incorporating
one more piece of data. Therefore, the marginal revenue vk by
including type k data can be calculated as follows:

vk = ∂J∗(D)

∂Nk
,∀k ∈ K, (42)
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where K ≡ {0, 1, 2, . . . , K} represents the set of different data
types.

The marginal revenue improvement can help derive the
prices of data with different noises. Specifically, the price of
a type k load profile can be calculated by:

Ck = C0· vk

v0
= C0·∂J∗(D)

∂Nk

(
∂J∗(D)

∂N0

)−1

,∀k ∈ K, (43)

where C0 denotes the data price for a conventional noise-free
load profile (group 0).

Before deriving the specific form of Ck, we first provide a
lemma to offer the intuitions of pricing. Intuitively, including a
new load profile with larger noise contributes less to reduce the
estimation variance Var(s). The following lemma helps us to
quantify such contributions by the notion of valid information
ratio:

Lemma 3: To achieve a desired estimation variance σ 2
des at

time t, the data amounts Nk of different groups should satisfy:
∑

k∈K Nkrt,k = Var(dt)

σ 2
des

, ∀t ∈ T , (44)

where T ≡ {1, 2, . . . , T} and K ≡ {0, 1, 2, . . . , K}. The
parameter d = (d1, . . . , dT) denotes the random variable char-
acterizing the distribution of load profile samples with variance
Var(dt) for entry t.

We also term rt,k the valid information ratio for type k data
at time t with the following mathematical definition:

rt,k = Var(dt)

Var(dt) + σ 2
k

, ∀t ∈ T ,∀k ∈ K. (45)

This is an important result indicating the relationship
between the required data amount Nk and the valid information
ratio rt,k. We can observe that the left-hand-side term of
Eq. (44) can be seen as the aggregate contribution of differ-
ent groups to achieve the desired estimation variance. And the
contribution of group k data is the product of data amount Nk

and the valid information ratio rt,k. In other words, the valid
information ratio rt,k characterizes the marginal contribution
of type k data.

The valid information ratio rt,k exactly equals the ratio
between the noise-free data variance and noisy data variance.
A larger injected noise σ 2

k leads to a smaller rt,k and con-
tributes less to the estimation. Based on this lemma, we can
finally derive the following theorem of pricing:

Theorem 7: For any task Q and the corresponding over-
all revenue function J

∗
(D), the price Ck for type k data is

independent of the dataset D and satisfies:

Ck =
∑T

t=1 rt,k

T
C0,∀k ∈ K, (46)

where K ≡ {0, 1, 2, . . . , K} represents the set of different data
types, the parameter T denotes the length of load profiles, and
rt,k denotes the valid information ratio of type k data at time t.

This is a surprisingly simple pricing scheme. The term
1
T

∑T
t=1 rt,k can be seen as the discount ratio due to the noise

of type k data, which equals the average of valid information
ratios rt,k across all T time slots. The parameter C0 denotes the
noise-free data price, and the pricing for noise-free data has

been extensively studied [49]. Various pricing approaches have
been proposed and empirically adopted, like fixed flat-rate
pricing, usage-based pricing, application and content-based
pricing [56], etc. In practice, we can follow these classical
pricing approaches to determine the noise-free data price C0. It
is worth remarking that this pricing scheme has the following
two nice properties:

• Independence of Task Q: The pricing scheme does not
include additional task-related information, like βQ and
JQ, which are difficult to obtain in practice.

• Independence of data amount N: Although D is included
in the price definition in Eq. (43), only variance terms
are retained in the final pricing scheme, without including
the data amount N. This enables uniform pricing for data
demanders owning different amounts of data.

In general, the marginal value of data depends on
the information already available. With more available
information, the marginal value of new data decreases.
However, note that our pricing is not exact pricing. It is more
like a promotion that investigates how the good should be
discounted due to the injected noise. A key property of our
pricing is that, the discount ratio is not related to the available
information, and it is a constant.

Note that, Assumption 1 can be relaxed to the tail-sensitive
tasks, i.e., the revenue JQ is a function of the tail probability
as JQ(Pr[ 1

T ||ŝ−μ||1 ≥ k]|D). It will lead to a similar pricing
scheme, and the only difference is that the definition of valid

information ratio is slightly changed to rt,k = σ̃ 2
t

σ̃ 2
t +σ 2

k
, where

σ̃ 2
t denotes the proxy variance of load profiles for entry t.

VI. NUMERICAL STUDY

In this section, we empirically illustrate the estimation
performance of user profiling with privacy-preserving mech-
anisms. We also demonstrate the high consistency of our
theoretical results.

In the experiments, we adopt the user electricity consump-
tion data in Pecan Street [57] with the resolution of 15
minutes from January 1 to December 31, 2018. The dataset
includes 8, 360 daily energy consumption profiles of individual
residential users.

A. Clustering With Privacy-Preserving Mechanisms

We first simulate the data market organizer to conduct the
k-means clustering algorithm and divide the load profiles into
24 groups. Fig. 3 characterizes the typical user energy con-
sumption patterns and the corresponding proportions. We can
observe that most patterns are diversified.

Consider a data demander to estimate the user pattern
based on limited samples from the data market. Fig. 4 illus-
trates the estimation results with different numbers of sam-
ples and various privacy-preserving mechanisms. We use the
Laplace mechanism with λ = 1. We can observe that in
Fig. 4(a), when only 10 samples are utilized, the estimation
error is considerablely large. In contrast, with more samples
being utilized, the estimation error is significantly reduced
in Fig. 4(b). Considering the original load profiles are pro-
tected by the Gaussian mechanism in Fig. 4(c), the estimation
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Fig. 3. Real Clustered User Profiles: (pj:xj) means pattern j and its proportion.

Fig. 4. Cluster with Limited Samples and DP Mechanisms.

TABLE II
PERFORMANCE OF PRIVACY-PRESERVING CLUSTERING

error increases compared with the noise-free case in Fig. 4(a).
And more importantly, the user energy consumption patterns
are certainly influenced due to the DP mechanisms. But with
more samples, such an estimation error can be well contained,
as illustrated in Fig. 4(d). Table II summarizes the estima-
tion performance of different cases with two metrics: the
mean absolute error (MAE) and mean squared error (MSE).
Specifically, for both the noise-free and noise-injection cases,
more samples (only 20 additional samples) can reduce the
MAE and MSE by around 40% and 70%, respectively. In con-
trast, after applying the noise-injection mechanism, both the
MAE and the MSE of estimation are enlarged, which is the
cost to provide a certain DP guarantee.

To understand how the DP guarantee works, we provide
an example of confounding among users with the privacy-
preserving mechanisms in Fig. 5. Consider there are 12 users
with different load profiles. When their load profiles are

Fig. 5. Privacy Guarantee: Confounding between Users.

Fig. 6. Estimation Performance with Gaussian and Laplace Mechanisms.

noise-free, every user can be distinguished from the others
(i.e., classified into distinct clusters), which is illustrated in
Fig. 5(a). After the profiles are protected by the Laplace mech-
anism with λ = 0.8, the privacy protection level becomes 1.25.
We can observe that some users can be mistakenly identified
as other types of users (like user 3 and user 4). When the
magnitude λ in the Laplace mechanism increases to 1.6, the
privacy protection level further improves to 0.625. Fig. 5(c)
shows that almost all users are mistakenly identified as the
other types of users.

B. Performance Evaluation

Now we analyze the relationship between the estimation
accuracy and the magnitude of injected noise for the two
mechanisms. Fig. 6 characterizes the impact of the Gaussian
and Laplace mechanisms on estimation variance and tail prob-
ability. Specifically, a larger scale parameter (i.e., σ of the
Gaussian mechanism and λ of the Laplace mechanism) leads
to a more rapid increasing rate of the empirical estimation
variance, illustrated in Figs. 6(a) and 6(c). This observation
is highly consistent with our theory. For the impact on tail
probability, Figs. 6(b) and 6(d) show that the tail probabil-
ity increases with the growing scale parameter. A certain gap
exists between the theoretical and the empirical results. This is
because our result doesn’t require the exact distribution of d.
However, the trends of the empirical and theoretical results are
quite aligned with each other, which indicates that the theoret-
ical result can fit the empirical curve well when multiplying
by an empirically decided constant.
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Fig. 7. Value of Data with Gaussian and Laplace Mechanisms.

Fig. 8. Performance of Optimal Weighted Clustering.

Fig. 7 reveals the value of data to different DP mechanisms.
In Figs. 7(a) and 7(c), we can observe that a large sample
size can significantly reduce the estimation variance for both
Gaussian and Laplace mechanisms, which fits the theory well.
Meanwhile, in Figs. 7(b) and 7(d), the log-scale tail proba-
bility linearly decreases with the sample size, which is also
consistent with our theory on the order.

We further verify the performance improvement of the
optimal weighted approach. Fig. 8 illustrates the improvement
for the optimal weighted approach compared with the sample
average approach. Specifically, Fig. 8(a) shows the distribution
of the estimation bias under Gaussian mechanism, the optimal
weighted approach can reduce the estimation bias by 10.2%.
Further, for the tail probability under Gaussian mechanism,
Fig. 8(b) indicates that the optimal weighted approach can sig-
nificantly reduce the probability that a large estimation bias
occurs, which demonstrates the effectiveness of the optimal
weighted approach. Fig. 8(c) further shows that with the
Laplace mechanism, the optimal weighted approach can effec-
tively reduce the estimation bias by 15.5%. Fig. 8(d) reveals

TABLE III
PRICE MENU FOR PRIVATE DATA WITH GAUSSIAN MECHANISM (δ = 1)

TABLE IV
PRICE MENU FOR PRIVATE DATA WITH LAPLACE MECHANISM

that the optimal weighted approach outperforms the average
estimation for different bias ranges. When the allowed bias
becomes larger, the effectiveness of our weighted approach is
even more highlighted.

We provide price menus in Tables III and IV to illustrate
the impact of the Gaussian and Laplace mechanisms on the
price. Specifically, suppose the price of a noise-free load pro-
file is $1, which cannot guarantee any privacy requirement
(ε = ∞). When we require a better privacy level ε, the
magnitude parameters (again, σ of the Gaussian noise and
λ of the Laplace noise) become large, and the corresponding
prices decrease at similar rates. When the required privacy
level becomes 0.5, the corresponding noisy data only have
5% − 7% of the original values.

VII. CONCLUSION

In this paper, we first provide the theoretical trade-offs
between the DP privacy protection level and user pattern esti-
mation accuracy for clustering-based electricity user profiling,
which provide valuable guidelines for choosing the noise-
injection level for user profiling. We further implement the
privacy-preserving data market, selling heterogeneous load
profiles from both data utilization and data pricing per-
spectives. For data utilization, we propose a variance- and
tail-minimization user pattern estimation approach with data
protected by heterogeneous privacy-preserving mechanisms.
For data pricing, we propose a valid information ratio-based
price scheme for noisy load profiles.

Our work can be extended in various interesting ways. First,
our analysis mainly targets at cluster center estimation with
multiple samples belonging to the cluster. It is interesting to
extend the current analysis to the case with samples from dif-
ferent clusters. Except for this, investigating the exact data
pricing for noise-free data in the context of user profiling is an
interesting extension. Also, it is worth considering extending
our analysis to other tasks beyond user profiling.

For practical implementation, our framework may face dif-
ficulties in various aspects. For example, from the data privacy
aspect, we need to guarantee the information security for
the market organizer who collects all the raw data. From
the market implementation aspect, a reasonable and incen-
tive revenue-sharing mechanism is required to allocate the
revenue of selling data among the market organizer and all
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data providers. Designing solutions to these practical prob-
lems is crucial to the successful deployment of our proposed
mechanism.

APPENDIX

A. Proof for Fact 2

We first prove the results for Pr[|ŝt − μt| ≥ k], and then
combine the results for different t to derive the results for
Pr[ 1

T ||ŝ−μ||1 ≥ k]. We define the proxy variance [47] σ̃ 2
t for

variable dt as:

σ̃t = arg min
v

: E
[
eλ(dt−μt)

]
≤ e

λ2v2
2 ,∀λ ∈ R. (47)

For the Gaussian noise η ∼ N (0, σ 2), its moment-
generating function is as follows:

E
[
eλη
] = e

λ2σ2
2 . (48)

Hence, the proxy variance of η is σ 2. Combining Eqs. (48)
and (47) yields the following result:

E

[
eλ(η+dt−μt)

]
≤ e

λ2(σ̃2
t +σ2)
2 ,∀λ ∈ R. (49)

The desired probability Pr[|ŝt − μt| ≥ k] satisfies:

Pr
[|ŝt − μt| ≥ k

]

= Pr

[∣∣∣∣∣
1

N

N∑

i=1

(
d(i)

t − μt + η
(i)
t

)
∣
∣∣∣∣
≥ k

]

. (50)

Since d(i)
t and η(i) are all i.i.d., with a given positive k, the

inequality (15) in terms of Pr[|ŝt − μt| ≥ k] can be derived
by applying the Hoeffding’s inequality [47] to Eq. (50).

Further, the desired probability Pr[ 1
T ||ŝ − μ||1 ≥ k] can be

transformed into the following form based on the union bound:

Pr
[

1

T
||ŝ − μ||1 ≥ k

]
= Pr

[
1

T

T∑

t=1

|ŝt − μt| ≥ k

]

= 1 − Pr

[
T∑

t=1

|ŝt − μt| < kT

]

≤ 1 −
T∏

t=1

Pr
[|ŝt − μt| < k

]

= 1 −
T∏

t=1

(
1 − Pr

[|ŝt − μt| ≥ k
])

.

(51)

We next want to prove the following inequality:

1 −
T∏

t=1

(
1 − Pr

[
|ŝt − μt| ≥ k

])
≤

T∑

t=1

Pr
[|ŝt − μt| ≥ k

]
.

(52)

Denoting 1−(1−Pr[|ŝt−μt| ≥ k]) as at, the inequality (52)
can be transformed into:

1 −
∏T

t=1
at ≤

T∑

t=1

(1 − at), (53)

where 0 ≤ at ≤ 1,∀t.

Mathematical manipulation yields:

T∑

t=1

at −
∏T

t=1
at ≤ T − 1. (54)

Denoting
∑T

t=1 at −∏T
t=1 at as a function f (a1, a2, . . . , aT)

with respect to variables a1, a2, . . . , aT , we can easily verify
that:

∂f (a1, a2, . . . , aT)

at
= 1 −

∏

i �=t
ai ≥ 0,∀t ∈ T , (55)

where T ≡ {1, 2, . . . , T}.
Therefore, f (a1, a2, . . . , aT) is minimized when at = 1 for

all t. Since f (1, 1, . . . , 1) = T − 1, it directly indicates the
inequality of Eq. (54) holds. Combining Eqs. (52), (51) and
Eq. (50) yields our result. �

B. Proof for Fact 4

For the Laplace noise ηt with the pdf hL(x) satisfying:

hL(x) = 1

2λ
e− |x|

λ , (56)

we can derive the moment-generating function of the
Laplacian noise ηt as follows:

E
[
epηt

] = 1

1 − p2λ2
,∀t ∈ T , (57)

where T ≡ {1, 2, . . . , T}.
We further prove that ηt is sub-Exponential (SE) [47] with

parameters (4λ2,
√

2λ), denoted by SE(4λ2,
√

2λ) in short.
Specifically, we need to prove the following condition:

E
[
epηt

] = 1

1 − p2λ2
≤ e

p2(4λ2)
2 ,∀0 ≤ p ≤ 1√

2λ
. (58)

Denote function g(p) with variable p as follows:

g(p) := e
p2(2λ2)

2 − 1

1 − p2λ2
. (59)

It is apparent that g(0) = 0. The derivative of g(p) satisfies:

g′(p) = 2λ2p

(

2e2λ2p2 − 1
(
1 − λ2p2

)2

)

. (60)

We use z to represent p2λ2:

2e2z − 1

(1 − z)2
≥ 0. (61)

It is straightforward to check that this inequality holds for
all z ≤ 1

2 , i.e., p ≤ 1√
2λ

. Also, by the definition of proxy
variance in Eq. (17), we know dt is also sub-Exponential with
parameters SE(σ̃ 2

t ,∞). By the additivity of sub-Exponential
variables, ηt + dt is also sub-Exponential with parameters
SE(σ̃ 2

t + 4λ2,
√

2λ).
Therefore, for any given positive k, the desired probability

Pr[|ŝt − μt| ≥ k] satisfies:

Pr
[|ŝt − μt| ≥ k

]

= Pr

[∣∣
∣∣∣

1

N

N∑

i=1

(
d(i)

t − μt + η
(i)
t

)
∣∣
∣∣∣
≥ k

]

,∀t ∈ T . (62)
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Since d(i)
t and η

(i)
t are both i.i.d., applying sub-Exponential

version of Bernstein’s inequality [47] for the tail probability
yields the result.

The probability Pr[ 1
T ||ŝ − μ||1 ≥ k] can be further derived

following the same routine in the proof for Fact 2. This
completes our proof. �

C. Proof for Theorem 5

We denote the variance Var(ŝt) as a function y with vari-
ables wt,k for all t and k. The first-order optimality condition
yields that, for all t ∈ T and k ∈ K:
∑

i
Niwt,i

(
σ 2

k + Var(dt)
)

wt,k =
∑

i
Niw

2
t,i

(
σ 2

i + Var(dt)
)
,

where T ≡ {1, 2, . . . , T} and K ≡ {0, 1, 2, . . . , K}.
By simplification, we can derive the following conditions:

wt,k

(
σ 2

k + Var(dt)
)

=
∑

i Niw2
t,i

(
σ 2

i + Var(dt)
)

∑
i Niwt,i

. (63)

It indicates that wt,k(σ
2
k + Var(dt)) is constant for all k.

Letting the constant be 1 directly yields our result.
Further, we can check the second-order optimality con-

ditions hold under the optimal condition in Eq. (63). This
immediately indicates the uniqueness of the solution, which
completes our proof. �

D. Proof for Lemma 3

According to Theorem 5, the specific form of the optimal
variance Var(ŝt) given D satisfies:

Var
(
ŝt
) = 1

N

∑K
k=0 Nk

∑K
k=0

Nk

Var(dt)+σ 2
k

,∀t ∈ T , (64)

where T ≡ {1, 2, . . . , T}.
We define the valid information ratio rt,k as:

rt,k = Var(dt)

Var(dt) + σ 2
k

. (65)

Plugging the definition of the valid information ratio rt,k

into Eq. (64) yields the following:

Var
(
ŝt
) = 1

∑K
k=0

Nkrt,k
Var(dt)

,∀t ∈ T . (66)

Letting Var(ŝt) to be the desired variance level σ 2
des directly

yields our results. �

E. Proof for Theorem 7

The price of differentially private data of type k has the
following definition:

Ck = C0·∂J∗(D)

∂Nk

(
∂J∗(D)

∂N0

)−1

. (67)

The data price formulas can be reformulated into the
following form by the chain rule:

∂J∗(D)

∂Nk
=
∑

Q
βQ

∂JQ(D)

∂Var
(
ŝ
)

T∑

t=1

∂Var
(
ŝ
)

∂Var
(
ŝt
) ·∂Var

(
ŝt
)

∂Nk
, (68)

∂J∗(D)

∂N0
=
∑

Q
βQ

∂JQ(D)

∂Var
(
ŝ
)

T∑

t=1

∂Var
(
ŝ
)

∂Var
(
ŝt
) ·∂Var

(
ŝt
)

∂N0
. (69)

Further, taking derivatives on Eq. (44) in Lemma 3 yields
the following condition:

∂Var
(
ŝt
)

∂Nk
= rt,k·∂Var

(
ŝt
)

∂N0
. (70)

Given the fact that Var(ŝ) = ∑T
t=1 Var(ŝt), combining

conditions in Eqs. (70), (68) and (69) yields our results. �
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