
IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 39, NO. 1, JANUARY 2024 779

Sample-Adaptive Robust Economic Dispatch With
Statistically Feasible Guarantees

Chenbei Lu , Graduate Student Member, IEEE, Nan Gu , Graduate Student Member, IEEE,
Wenqian Jiang , Graduate Student Member, IEEE, and Chenye Wu , Member, IEEE

Abstract—The high penetration of renewable energy brings
significant uncertainty to the power grids. Taking economic dis-
patch (ED) as an example, the inaccurate prediction of renewable
energy generations dramatically increases the dispatch cost and
risks the power grid’s reliable operation. The accurate distribution
knowledge of the renewable generations enables modeling the ED
as stochastic programming with joint chance constraints, which
various classical methods can tackle. However, in practice, such
distribution knowledge is inaccessible, and we can only observe
samples from some unknown distribution. This makes conducting
effective ED solely based on the observed samples challenging.
It is particularly true when we need to handle the joint chance
constraints. To tackle these challenges, we introduce the notions
of statistical feasibility and statistically feasible ED to guarantee
the satisfaction of the joint chance constraints. Specifically, we first
propose a sample-adaptive robust optimization (RO) to decouple
the joint constraints. We then identify that the inaccurate uncer-
tainty set leads to RO’s conservativeness, and then reconstruct the
constraint-specific uncertainty sets. We design the corresponding
sample-adaptive reconstruction-based RO (ReconRO) based on
the reconstructed uncertainty sets to further enhance the ED’s
effectiveness.

Index Terms—Chance-constrained optimization, economic
dispatch, robust optimization, sample-based optimization.

I. INTRODUCTION

ECONOMIC dispatch (ED), a classical procedure of the
power grid operation, is very well-investigated, especially

with the advances in forecast methods over the past decades.
However, the increasing penetration level of renewable energy
poses significant challenges to the effective ED. Specifically, the
significant prediction error of renewable energy increases the
system dispatch cost. It also brings high risks to balancing the
geographically distributed loads and maintaining the physical
constraints, which are the core tasks of ED.
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Although eliminating the prediction error is impossible, it is
often viable to estimate the distribution information about re-
newable energy generation. Such estimation allows us to model
the ED as a standard stochastic programming [1]. However, the
accurate distribution information may also be hard to obtain in
practice, because we can only observe the samples drawn from
the distribution. Conducting effective ED solely based on the
observed samples can be challenging because ED often involves
probabilistic constraints, e.g., chance constraints (CCs) and even
joint CCs, whose feasibility can be hard to quantify based on
samples.

To overcome these issues, we first introduce the notion of
statistical feasibility, which provides a theoretical guarantee of
satisfying the joint CCs with samples. Then, we propose a more
practical formulation termed as statistically feasible ED built on
statistical feasibility. In such a formulation, the remaining hurdle
is to handle the joint CCs with a statistical feasibility guarantee.
To mitigate this hurdle, we first propose a sample-adaptive
robust optimization (RO) which can decouple the joint CCs
by generating the corresponding uncertainty sets with provable
statistical feasibility. Like most RO, this sample-adaptive RO
is still conservative. We identify that the inaccurate uncertainty
set construction leads to the conservativeness, which inspires
us to reconstruct the constraint-specific uncertainty set and
further propose the reconstruction-based robust optimization
(ReconRO) to prompt the performance of ED.

A. Related Works

The conventional method to handle the sample-based ED is
scenario generation (SG) [2], [3]. However, the SG is computa-
tionally expensive and largely reliant on the quantity and quality
of the sample collection. The maturity of RO techniques and
chance-constrained methods has promoted power grid operation
with uncertainty. In the case of RO, Jiang et al. employ the
RO framework to conduct unit commitment (UC) for thermal
generators in the day-ahead market and devise a scheme to
control the RO’s conservativeness in [4]. Bertsimas et al. adapt
the RO framework to the two-stage security-constrained UC
problem and develop a practical algorithm in [5].

As for chance-constrained optimization, Wang et al. first
propose a two-stage chance-constrained program for the UC
problem with wind generation output in [6]. Poze et al. use the
chance-constrained framework to incorporate wind and demand
uncertainty in a joint energy and reserves scheduling problem
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in [7]. Bienstock et al. advance a stylized formulation of chance-
constrained optimal power flow and design an efficient algorithm
in [8]. For the more challenging joint chance-constrained op-
timization, the common computational method is to consider
the convex and tractable approximations [9], [10]. The most
related work is [11], where Van et al. consider a hydrothermal
UC problem with two-sided CC, and they modify the classical
cutting plane method to obtain an exact solution.

To provide more robustness to the chance-constrained op-
timization, the distributionally robust optimization (DRO) is
proposed for the ED [12]. Just to name a few, Zhang et al. propose
a DRO approach to conduct the ED with renewable energy gen-
eration in [13]. Duan et al. adopt Wasserstein ball-centered DRO
to calculate the optimal power flow in [14]. Xie et al. propose a
data-driven distributionally robust chance-constrained optimal
power flow model (DRCC-OPF) with an effective second-order
cone programming (SOCP) reformulation in [15]. Gu et al. adopt
the DRO framework to conduct effective operations of stochastic
emission-aware economic dispatch with storage systems in [16].
However, the literature for ED with DRO seldom considers joint
CCs since they are more challenging to compute than individual
CC [17]. For general literature handling the joint CCs, they can
be categorized into three groups. The first type of works use a
conservative approximation to build convex approximations of
joint CCs for DRO, and produce an approximate solution [18],
[19], [20]. The second type of works reformulate joint chance
constraints to a mixed-integer conic program/binary bi-linear
problem, but makes the original problem complex with addi-
tional integer variables [21], [22], [23]. And the third type of
works can reformulate the joint chance-constrained problem
as a convex program that can be effectively solved. However,
these works are effective often under strong assumptions, such
as the constraint configuration and the assumptions on the type of
ambiguity set [24], [25]. Some of the reformulations also suffer
from the curse of dimensionality, i.e., the problem size grows
with the dimension of decision variables/random variables [9].
In contrast, our approach can accurately solve the joint CCs
in the ED problem by transforming the original problem into
an equivalent convex program. Further, our approach is only
based on samples without additional assumptions to the random
variable’s distribution.

We are not the first to consider the satisfaction of joint CCs
with samples. Recently, there is a growing body of literature
dealing with the joint CCs in the RO scheme. For example,
Margellos et al. generate the uncertainty sets in the RO frame-
work through sample-based methods in [26]. Hong et al. further
theoretically advance the concept of statistical feasibility in
learning the shape of the RO’s uncertainty set and practicing
the concept by calibrating the uncertainty set’s coverage in [27],
which inspires our work. In the power sector, there are a few
works considering sample-based reformulations of joint CC
optimal power flow, such as [28] and [29]. However, they all
employ the traditional CC computation method and don’t pro-
vide the satisfaction guarantees for joint CCs based on samples.
That is, the samples may lead to inaccurate prediction for the
random variables in some cases, leading to constraint violation
and sub-optimal solution. The limitations of the conventional

Fig. 1. Conventional Optimization Approaches.

Fig. 2. Framework of Our Approach.

approaches are illustrated in Fig. 1. In contrast, we introduce
the notion of statistical feasibility to capture the uncertainty
of the samples, and then propose the statistically feasible ED
to guarantee the satisfaction of the joint CCs. We also pro-
pose a reconstruction-based robust optimization approach to
further improve the solution. The framework of our approach
is presented in Fig. 2. Specifically, the detailed comparison be-
tween our approach and the existing approaches is illustrated in
Table I.

B. Our Contributions

Our major contributions can be summarized as follows:
� Statistically Feasible ED: We introduce the notion of sta-

tistical feasibility for ED, which can provide a theoretical
guarantee for satisfying the joint CCs based on samples,
yielding the formulation of statistically feasible ED.

� Sample-Adaptive RO Customized for ED: To effectively
solve the statistically feasible ED, we first construct the
uncertainty set based on samples with statistical feasibility
guarantees and then propose the sample-adaptive RO.

� Sample-Adaptive ReconRO Customized for ED: To over-
come RO’s conservativeness, we reconstruct the constraint-
specific uncertainty set, yielding the sample-adaptive Re-
conRO.

The remainder of this paper is organized as follows: Section II
introduces the conventional chance-constrained ED. Section III
proposes the notion of statistical feasibility and the formulation

Authorized licensed use limited to: The Chinese University of Hong Kong CUHK(Shenzhen). Downloaded on January 11,2025 at 06:48:47 UTC from IEEE Xplore.  Restrictions apply. 



LU et al.: SAMPLE-ADAPTIVE ROBUST ECONOMIC DISPATCH WITH STATISTICALLY FEASIBLE GUARANTEES 781

TABLE I
COMPARISON OF DIFFERENT APPROACHES

of statistically feasible ED. Section IV proposes a sample aver-
age approximation approach to reckon the stochastic objective
function and investigates the theoretical accuracy-complexity
trade-off of the approximation. To design an effective approach
for the statistically feasible ED, Section V introduces the prelim-
inaries of RO and proposes an RO-based formulation to decouple
the joint CCs with provable statistical feasibility. Section VI
implements a sample-adaptive approach for solving the RO with
statistical feasibility guarantees. Section VII identifies the key
factors for the conservativeness of RO and then proposes the
ReconRO with better economic performance and less conserva-
tiveness. Section VIII evaluates the performance of our proposed
approaches. Section IX concludes our paper.

II. SYSTEM MODEL

Consider a set of geographically distributed generatorsN and
demandsM (the renewable generations can be regarded as nega-
tive demands) on a power network with a set of transmission lines
A. The standard ED seeks to conduct load balancing over T time
slots satisfying a set of constraints. The key challenge comes
from the stochasticity in the net load. To better characterize such
stochasticity, we model the net demand as random variables
following certain distributions. The system cost includes the
generation cost for each generator and the risk cost from the
real-time generation-demand mismatch. The system operator
seeks to minimize the system cost by solving the following
stochastic optimization:

(P1)min

T∑
t=1

(∑
i∈N

Ci(g
t
i) +R(Gt, Dt)

)
(1a)

s.t. Gt =
∑
i∈N

gti , Dt =
∑
i∈M

dti, ∀t, (1b)

St = Dt −Gt, ∀t, (1c)

R(Gt, Dt)=γ1E[(S
t)

+
] + γ2E[(−St)

+
], ∀t,

(1d)

f t = Hgg
t −Hdd

t, ∀t, (1e)

P

(
T∩

t=1
{f t

i ≤ f i}
)

≥ ρi,1, ∀i ∈ A, (1f)

P

(
T∩

t=1
{f t

i ≥ −f i}
)

≥ ρi,2, ∀i ∈ A, (1g)

gmin
i ≤ gti ≤ gmax

i , ∀i ∈ N , ∀t, (1h)

− DRi ≤ gt+1
i − gti ≤ URi, ∀i ∈ N , ∀t, (1i)

where (x)+ = max(x, 0).
The decision variables in (P1) are gti ’s, the generation of

generator i at time t, with the vector form gt = [gti , ∀i ∈ N ].
The other parameters include:
� Gt: total generation at time t;
� Dt: total demand at time t;
� St: generation shortage at time t (St < 0 indicating gen-

eration excess);
� f t

i : power flow of transmission line i at time t, with the
vector form f t = [f t

i , ∀i ∈ A];
� dti: the net demand for demand i at time t, with the vector

form dt = [dti, ∀i ∈ M];
� γ1, γ2: the unit generation shortage and excess risk cost;
� Hg,Hd: the shift factor matrix for generators and de-

mands, respectively;
� f i: the power flow capacity of transmission line i, with the

vector form f = [f i, ∀i ∈ A];
� ρi,1, ρi,2: the stability requirements of upper and lower

limit capacity on transmission line i;
� gmin

i ,gmax
i : the minimal and maximal generation capacities

of generator i;
� URi, DRi: the ramp up and down limits of generator i;
� Ci(·): convex generation cost function for generator i;
� R(Gt, Dt): the risk cost with total generation Gt and total

demand Dt;
Constraint (1c) characterizes the generation shortage; con-

straint (1d) specifies the risk cost which includes the expected
generation shortage and excess cost; constraint (1e) describes
the power flow on the transmission lines; constraint (1f) and
(1g) describe the joint CCs of upper and lower limit capacities
on transmission lines during the whole time horizon; constraint
(1h) characterizes the generation capacity of generators; and
constraint (1i) characterizes the ramp up and down rate capacity
of generators.

This is a classical stochastic ED with joint CCs. The essential
difficulty comes from the uncertainty of demands dti, since
both the risk cost R(Gt, Dt) and the transmission line capacity
constraints in (1f) and (1g) involve dti. Without full knowledge
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Fig. 3. Power of Prediction Error Decomposition.

of each dti’s distribution, we cannot accurately evaluate the
objective function. Further, the feasibility of the CCs cannot be
guaranteed without distribution information. These two issues
seriously deteriorate the economic performance and transmis-
sion line security.

To tackle these challenges, in the next section, we propose
a more practical formulation termed as the statistically feasible
ED, which is only dependent on the samples.

III. STATISTICALLY FEASIBLE ECONOMIC DISPATCH

In this section, we first decompose the prediction errors from
dti to better handle the uncertainty in ED. Then, we illustrate the
challenges of the optimization only with samples, and introduce
the notion of statistical feasibility. Finally, we customize a more
practical statistically feasible ED formulation.

A. Prediction Error Decomposition

The uncertainty of dti is the primary hurdle for solving (P1).
However, directly dealing with the uncertainty in dti can be
problematic. First, the realization of dti can be affected by many
factors and always exhibits time-varying characteristics. Further,
the variance of dti is significant, which can be observed from
the blue histogram in Fig. 3(a). This often makes the CCs very
conservative. To eliminate the temporal dependency, the most
common approach is to take the difference of the time series, the
histogram of which is illustrated in Fig. 3(b). We can observe
that the variance of the new difference series is well reduced.
An even better approach [16] is to use predictive models (i.e.,
neural networks) to capture the time-varying factors directly,
and then all the uncertainties come from the prediction errors,
i.e., dti = d

t
i + ξti , where d

t
i and ξti denote the predicted demand

and prediction error for demand i at time t, respectively. From
Fig. 3(c), we can find that ξti exhibits a very small variance.

Such a prediction error decomposition transforms (P1) into
the following equivalent problem (P1e):

(P1e)

min

T∑
t=1

(∑
i∈N

Ci(g
t
i) +R(Gt, Dt)

)
(2a)

s.t. f t(gt; ξt) = Hgg
t −Hd(d

t
+ ξt), ∀t, (2b)

P

(
T∩

t=1
{f t

i (g
t; ξt) ≤ f i}

)
≥ ρi,1, ∀i ∈ A, (2c)

Fig. 4. Estimation from different Sample Sets.

P

(
T∩

t=1
{f t

i (g
t; ξt) ≥ −f i}

)
≥ ρi,2, ∀i ∈ A,

Constraints (1b)−(1d), (1h)−(1i), (2d)

where d
t

is the vector form of the predicted demands, i.e., d
t
=

[d
t
i, ∀i ∈ M];ξt is the vector form of the prediction errors at time

t, i.e., ξt = [ξti , ∀i ∈ M]. We also denote ξ = [ξt, ∀t]. Note that,
we adopt the notation f t(gt; ξt) to highlight that the power flow
f t is the function of decision variables gt and random variables
ξt.

It is clear that, the uncertainty in (P1e) only exists in ξ.
Moreover,Dt in the objective function also involves ξ implicitly.

In practice, the exact distribution of ξt is unknown. we can
only observe a set of samples of ξt, i.e., Dξ = {ξ(i), ∀i ∈ S},
where ξ(i) is an error sample including all errors in an ED
process, i.e., ξ(i) = {ξ(i),tj , ∀t ≤ T , ∀j ∈ M}. S is the index
set of error samples. Generally, the prediction errors has time-
invariant property [34], thus we can assume that every single
ξ(i) is randomly sampled from ξ’s actual distribution Fξ.

B. Statistically Feasible ED

However, it is challenging to estimate the real distribution
Fξ only with samples. We provide an example to illustrate this
challenge in Fig. 4, where we want to conduct the distribution
estimation. Consider the case that all samples are independently
drawn from a standard normal distribution. Fig. 4(a) and (c)
illustrate two possible sample sets.

The two sample sets will lead to different estimations of
random variable ξ: Fig. 4(b) and (d) illustrate the ellipsoid based
on the estimated mean and covariance matrix from the sample
sets 1 and 2, respectively. We can observe that the estimation
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Fig. 5. Statistically Feasible Optimization.

from set 1 is closer to the optimal shape, while the estimation
from set 2 is dramatically different from the optimal one.

It indicates that different samples will lead to different es-
timations. When we are provided with sample sets that cause
large estimation errors, it is often difficult to guarantee the
satisfaction of constraints, as well as the economic performance
of optimization algorithms. To quantify such uncertainty from
the dataset and its influence on the optimization, we introduce
the notion of statistical feasibility.

We first introduce the notion of statistical feasibility, and then
introduce formulate our statistically feasible ED:

Definition 1 (Statistical Feasibility [27]): For any given
dataset Dξ, an approach will produce a solution ĝ. An approach
has the statistical feasibility guarantees if the solution ĝ it
provides is feasible for the constraints with confidence level η
for any given dataset Dξ.

Specifically, for a CC Pξ(f(ĝ; ξ) ≤ b) ≥ ρ, the statistical
feasibility is defined as:

PDξ
(Pξ (f(ĝ(Dξ); ξ) ≤ b) ≥ ρ) ≥ η. (3)

Since the solution ĝ is based on dataset Dξ, we use symbol
ĝ(Dξ) to demonstrate that ĝ is influenced by Dξ. Moreover,
since the samples of the dataset are randomly selected from the
distributionFξ, the solution ĝ also follows a certain distribution.
The inside constraint in (3) is the conventional CC. And the
outside constraint in (3) further guarantees that for all resulted
solutions ĝ (essentially, for different sample sets Dξ), the inside
CC can be satisfied with a probability no smaller than η.

Fig. 5 illustrates the main idea of our proposed notion. Specif-
ically, the cube on the left characterizes all possible sample sets.
Any point in the cube is a possible sample set with a number of
samples, i.e.,Dξ = {ξ(i), ∀i}. In our statistically feasible robust
optimization, we guarantee that except for a small part of biased
sets (≤ η, potentially brings huge estimation error), for any other
sample set, we can accurately guarantee that based on the sample
set, the CC can be satisfied.

Remark: Note that, although with similar names, the notion
of statistical feasibility is quite different from the statistical guar-
antee for DRO. The statistical feasibility characterizes the ability
of an approach (algorithm) to provide feasible solutions for CCs
with different sample sets. While the statistical guarantee for
DRO refers to its ability to make robust decisions against a set
of possible distributions (the ambiguity set) [21].

Now we adopt the notion of statistical feasibility to define the
statistically feasible ED as follows:

(P2)min
T∑

t=1

(∑
i∈N

Ci(g
t
i) +R(Gt, Dt)

)
(4a)

s.t. PDξ
(Pξ

(
T∩

t=1
{f t

i (g
t; ξt) ≤ f i}

)
≥ ρi,1) ≥ ηi,1,

∀i ∈ A, (4b)

PDξ
(Pξ

(
T∩

t=1
{f t

i (g
t; ξt) ≥ −f i}

)
≥ρi,2)≥ηi,2,

∀i ∈ A,

Constraints (1b)−(1d), (2b), (1h)−(1i), (4c)

where ηi,1 and ηi,2 denote the required confidence levels for the
inside CCs. Note that, each f t

i is a function of gt and ξt, and gt

is dependant on dataset Dξ. The statistically feasible constraint
guarantees that the inside CC can be satisfied with a probability
η for any dataset Dξ. Essentially, this is a more practical formu-
lation that focuses on the samples with theoretical guarantees.
In the subsequent analysis, we focus on solving (P2).

However, there are two main hurdles to solving this problem.
First, the objective function in (4a) implicitly involves random
variable ξ (in Dt), which still requires the distribution infor-
mation. Second, it is not clear how to construct the solution
satisfying CCs (4b) and (4c).

IV. SAMPLE AVERAGE APPROXIMATION

This section proposes a sample-oriented approach to approx-
imate the objective function. We also theoretically characterize
the trade-off between the approximation accuracy and approxi-
mation complexity.

A. Sample Average Approximation

We focus on the risk costR(Gt, Dt) as it is the only term with
uncertainty in the objective function of (P2). The specific form
of R(Gt, Dt) is as follows:

R(Gt, Dt) = γ1E[(S
t)

+
] + γ2E[(−St)

+
]

= γ1E

[(∑
i∈M

(d
t
i + ξti)−Gt

)+]

+ γ2E

[(
Gt −

∑
i∈M

(d
t
i + ξti)

)+]
. (5)

Without the knowledge of ξ’s distribution, we cannot obtain
the accurate value of R(Gt, Dt). To tackle this issue, we adopt
the notion of sample average approximation (SAA), which ap-
proximates the expectation by sample average. Specifically, we
first randomly sample a subset Ds

ξ with size ns from Dξ. The

sample average of R̂(Gt, Dt) is calculated as follows:

R̂(Gt, Dt) =
1

ns

∑
ξ(j)∈Ds

ξ

R̃(Gt, ξ(j),t), (6)
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where

R̃(Gt, ξ(j),t) = γ1

(∑
i∈M

(d
t
i + ξ

(j),t
i )−Gt

)+

+ γ2

(
Gt −

∑
i∈M

(d
t
i + ξ

(j),t
i )

)+

. (7)

Since a linear transformation can easily remove the (·)+
operator, the derived sample average R̂(Gt, Dt) is essentially
a linear function of the decision variables gti .

B. Accuracy-Complexity Trade-off

Intuitively, with more samples for SAA, the approximation
should be more accurate. However, it will also complicate the
approximated function, which directly affects the computational
complexity. To validate this intuition, we derive the following
theorem to characterize the approximation error:

Theorem 1: Given sample size ns, the approximation error
e(ns) between the real objective function and its approximation
is bounded as follows:

P (|e(ns)| ≥ Δ) ≤ 2 exp

(
− 2nsΔ

2

T 2(γ2
1 + γ2

2)(ξ − ξ)2

)
, (8)

where ξ and ξ denote the upper and lower bounds for ξti ,
respectively.

This result indicates that the approximation error reduces ex-
ponentially fast with increasing sample sizens. Further, a longer
time horizon T , a higher risk cost, and a more significant error
range (ξ − ξ) all contribute to a more significant approximation
error, which coincides with our intuition. The detailed proof is
deferred to Appendix A.

The computational complexity refers to the computation time
for the optimization with sample size ns. Although the objective
function only contains the original decision variables gti , trans-
forming the term with (·)+ operator implicitly includes more
decision variables. Specifically, the number of terms with (·)+
operator is 2nsT .

Therefore, we can derive the following corollary to charac-
terize the approximation accuracy-complexity trade-off:

Corollary 1: Given time horizon T and sample size ns, the
approximation error isO(exp(−ns/T

2)) and the computational
complexity is O(nsT ).

This corollary demonstrates that with the increasing ns, the
approximation error decreases exponentially whereas the com-
putational complexity increases linearly. A detailed proof is
provided in Appendix B.

V. SAMPLE-ADAPTIVE RO: THE BASIS

In this section, we further propose an RO-based framework to
solve the original problem (P2), which can effectively decouple
the joint CCs while satisfying the requirement of statistical
feasibility. Specifically, we first revisit the traditional RO for
more intuitions, which shed light on solving statistically feasible
RO.

A. Revisit Robust Optimization

Consider a typical chance constrained optimization as fol-
lows:

(CC) min f (x; ξ) (9a)

s.t. hi(x) ≤ ai, ∀i, (9b)

Pξ (g (x; ξ) ≤ b) ≥ ρ, (9c)

where x denotes the decision variables, and ξ denotes the
random variables. Equation (9b) denotes the deterministic con-
straints, and (9c) denotes the CCs. Specifically, it requires that
the condition g(x; ξ) ≤ b need to be satisfied with a probability
of at least ρ over ξ.

Solving a chance-constrained optimization requires the dis-
tribution information about ξ. In contrast, the RO requires less
information about ξ and can produce an approximate solution of
(CC) while satisfying the CCs. Specifically, the corresponding
robust optimization (RO) is as follows:

(RO) min f(x; ξ) (10a)

s.t. hi(x) ≤ ai, ∀i, (10b)

g(x; ξ) ≤ b, ∀ξ ∈ U , (10c)

where U is the uncertainty set, connecting (RO) and (CC). The
following fact identifies the requirement for the uncertainty set
U :

Fact 1: Any feasible solution to (RO) is also feasible to (CC)
if the following condition holds for U :

Pξ(ξ ∈ U) ≥ ρ. (11)

This fact indicates that, if the uncertainty set U can cover
ρ of ξ’s range, the solution of (RO) will be feasible to (CC).
Intuitively, if U is large enough, constraint g(x; ξ) ≤ b can be
satisfied for ρ part of ξ, which satisfies the original CC (9c).

More importantly, the RO only requires an uncertainty set
to approximately cover the range of ξ, instead of ξ’s specific
distribution. This makes it possible to generate uncertainty sets
based on samples.

B. RO With Statistical Feasibility

Similarly, we propose an RO with statistical feasibility to
approximate the solution of (P2) as follows:

(P3) min

T∑
t=1

(∑
i∈N

Ci(g
t
i) + R̂(Gt, Dt)

)
(12a)

s.t.
T∩

t=1

{
f t
i

(
gt; ξt

) ≤ f i

}
, ∀ξ ∈ Ui,1(Dξ), (12b)

T∩
t=1

{
f t
i

(
gt; ξt

)≥−f i

}
, ∀ξ ∈ Ui,2(Dξ),

Constraints (1b)−(1d), (2b), (1h)−(1i), (12c)

where U t
i,1(Dξ), U t

i,2(Dξ) are the uncertainty sets associated
with the dataset Dξ.
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Fig. 6. Uncertainty Set Construction.

Similar to Fact 1, we can derive the following theorem to
bridge the gap between (P3) and (P2):

Theorem 2: Any feasible solution to (P3) is also feasible
to (P2) if the following conditions for the uncertainty sets
U t
i,1(Dξ), U t

i,1(Dξ) hold:

PDξ

(
Pξ

(
ξ ∈ U i,1(Dξ)

) ≥ ρi,1
) ≥ ηi,1, ∀i ∈ A, (13)

PDξ

(
Pξ

(
ξ ∈ U i,2(Dξ)

) ≥ ρi,2
) ≥ ηi,2, ∀i ∈ A. (14)

This theorem is obvious since the original constraint (4b) and
(4c) in (P2) can be derived by combining constraints (12b) and
(12c) with (13) and (14) in (P3). Intuitively, it requires that for
dataset Dξ, the desired uncertainty sets should cover ρ part of ξ
with confidence level η. We next solve problem (P3) to obtain a
feasible solution to (P2).

VI. SAMPLE-ADAPTIVE RO: IMPLEMENTATION

In this section, we propose an approach to construct the
uncertainty sets Ui,1(Dξ), Ui,1(Dξ) for a given dataset Dξ while
satisfying the conditions (13) and (14). Then, we solve the RO
with the constructed uncertainty sets.

A. Sample-Adaptive Uncertainty Set Generation

In the subsequent analysis, we only constructUi,1 because the
process to construct Ui,2 follows exactly the same routine. For
better tractability, we design Ui,1 with the shape of ellipsoid:

Ui,1 = {ξ|(ξ − μ)TM−1(ξ − μ) ≤ si,1}, (15)

where μ is a vector with the same size of ξ, M is a symmetric
matrix, and si,1 is a scalar. Specifically, μ and M characterize
the shape of the ellipsoid. Parameter si,1 characterizes the size
of the ellipsoid and varies for different uncertainty set Ui,1.

To estimate these parameters, we first divide the dataset Dξ

into two parts Dξ,1 and Dξ,2 with sizes n1 and n2. Dξ,1 is
used to estimate the shape parameters μ and M , and Dξ,2 is
used to estimate the size parameter si,1. Specifically, Dξ,1 =

{ξ(i), ∀i ∈ S1}, Dξ,2 = {ξ(i), ∀i ∈ S2}, where S1 and S2 are
the index sets of error samples in Dξ,1 and Dξ,2. Each sample

ξ(i) = {ξ(i),tj , ∀t,∀j ∈ M}. The two stages of uncertainty set
construction are visualized in Fig. 6.

1) Shape Estimation: We estimate μ by the sample mean of
ξ(i) in Dξ,1:

μ =
1

n1

∑
i∈Si

ξ(i). (16)

Further, we use the sample covariance matrix to estimate M ,
since it can well characterize the geometric distribution of ξ.
Mathematically,

M =
1

n1 − 1

∑
i∈S1

(ξ(i) − μ)(ξ(i) − μ)T. (17)

2) Size Calibration: si,1 determines the size of the ellipsoid.
Intuitively, an uncertainty set with a large si,1 can cover more
sample points, yet makes RO more conservative. While a smaller
si,1 leads to a less conservative RO, but may not satisfy the
requirement in (13). Therefore, we seek to decide the smallest
possible si,1 satisfying (13) to get the optimal solution.

To obtain such a si,1, we first define a dimension-collapsing
transformation function F (ξ) as follows:

F (ξ) = (ξ − μ)TM−1(ξ − μ). (18)

By the transformation function F (ξ), each sample vector
ξ can be transformed into a scalar. We transform all ξ(i) ∈
Dξ,2 with F , and then sort all these F (ξ(i)) into a new set
{ŝk, 1 ≤ k ≤ n2} in ascending order, i.e., ŝk ≤ ŝk+1.

The desired si,1 is estimated by:

si,1 = ŝk∗ , (19)

where the index k∗ satisfies:

k∗ = min

{
r :

r−1∑
k=0

Ck
n2
(ρi,1)

k(1− ρi,1)
n2−k ≥ ηi,1

}
. (20)

We can prove the following theorem for the constructed
uncertainty set:

Theorem 3 (Statistical Feasibility Guarantee, Theorem 1
in [27]): The ellipsoid uncertainty set Ui,1 with parameters μ,
M , and si,1 from the above estimation satisfies the requirements
in (13), (14) if

n2 ≥ ln(1− ρi,1)

ln ηi,1
, ∀i ∈ A. (21)

Intuitively, this theorem indicates a minimal dataset size
adopted for size calibration. When it requires larger ρ and η, the
required amount of samples becomes larger. It is also remarkable
that the required sample size doesn’t depend on the dimension d
of the random variable ξ, in contrast with SG, which requires the
sample size of O( d

1−ρ log 1
1−ρ ) to guarantee the desired stability

requirements [35].
Therefore, based on the constructed uncertainty set, we can

solve (P3) to get a solution with a statistical feasibility guarantee.

B. Solving RO by Linear Transformation

Robust constraints with uncertainty sets are difficult to tackle
since such constraints are often not linear or even non-convex.
Here we prove that, the robust constraints in (12b) and (12c) can
be transformed into linear constraints based on our designed
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uncertainty sets. (P3) can also be transformed into convex pro-
gramming.

Specifically, for joint constraints (12b) and (12c), they can be
naturally decoupled as follows:

f t
i ≤ f i, ∀ξ ∈ Ui,1, ∀i ∈ A, ∀t, (22)

f t
i ≥ −f i, ∀ξ ∈ Ui,2, ∀i ∈ A, ∀t. (23)

These constraints can be explicitly expressed in terms of gt

and ξt in the following form:

hi
gg

t − hi
d(d

t
+ ξt) ≤ f i, ∀ξ ∈ Ui,1, ∀i ∈ A, ∀t, (24)

hi
gg

t − hi
d(d

t
+ ξt) ≥ −f i, ∀ξ ∈ Ui,2, ∀i ∈ A, ∀t, (25)

where hi
g , hi

d denote the vector in the ith row of Hg and Hd,

d
t

denotes the vector of predicted demand at time t, i.e., d
t
=

[d
t
i, ∀i ∈ A].
Such constraints can be further transformed into linear con-

straints as follows:
Theorem 4: The robust constraints (24) and (25) can be

equivalently transformed into the following linear constraints:

hi
gg

t − hi
dd

t ≤ f i − αt
i,1, ∀i ∈ A, ∀t, (26)

hi
gg

t − hi
dd

t ≥ −f i + αt
i,2, ∀i ∈ A, ∀t, (27)

where αt
i,1, α

t
i,2 are scalars satisfying:

αt
i,1 = −hi

dμ
t +

√
si,1||(M t)

1
2 (hi

d)
T||2, (28)

αt
i,2 = hi

dμ
t +

√
si,2||(M t)

1
2 (hi

d)
T||2. (29)

Note that, M t denotes the submatrix of M correspond-
ing to dimension ξt in ξ. The detailed proof is deferred to
Appendix C.

Intuitively, constants αt
i,1 α

t
i,2 are included to make the con-

straints tighter than the case without ξ.
By such a transformation, we can derive the following

tractable RO:

(P4) min

T∑
t=1

(∑
i∈N

Ci(g
t
i) + R̂(Gt, Dt)

)
(30a)

s.t. hi
gg

t − hi
dd

t ≤ f i − αt
i,1, ∀i ∈ A, ∀t, (30b)

hi
gg

t − hi
dd

t ≥ −f i + αt
i,2, ∀i ∈ A, ∀t,

Constraints (1b)−(1d), (1h)−(1i). (30c)

Clearly, as long as Ci(·) is convex, (P4) is a convex program-
ming, which can be efficiently solved. By solving (P4), we can
obtain the solution to (P2). Algorithm 1 summarizes the whole
process.

VII. SAMPLE-ADAPTIVE RO: RECONSTRUCTION

In this section, we introduce a solution reconstruction ap-
proach to further enhance the performance of RO. Specifically,
we first demonstrate why RO is conservative and provide the
intuition for the reconstruction approach. Then, we reconstruct

Algorithm 1: Robust Optimization (RO).
Input Dξ, ρi,1, ρi,2, ηi,1, ηi,2, n1, n2, ns;
Output Solution g with statistical feasibility guarantees;
1: Divide Dξ into Dξ,1 and Dξ,2 with size n1 and n2;
2: Calculate the approximated objective function according

to (6);
Uncertainty Set Construction:
1: Estimate shape parameters μ and M based on Dξ,1

according to (16), (17);
2: Construct the dimension-collapsing transformation

function F (ξ(i));
3: Calculate F (ξ(i)) for all ξ(i) ∈ Dξ,2;
4: Sort all F (ξ(i)) in ascending order to get the list

Ŝ = {ŝk, 1 ≤ k ≤ n2};
5: for i ∈ A do
6: Calculate the index k∗ by (20) for Ui,1 and Ui,2;
7: Obtain si,1, si,2 based on k∗ and Ŝ;
8: end for

Optimization:
1: for t = 1, 2, . . ., T do
2: for i ∈ A do
3: Calculate αt

i,1 and αt
i,2 based on (28) and (29);

4: end for
5: end for
6: Solve (P4) to get the solution g;

the uncertainty set. Finally, we solve the RO based on the
reconstructed uncertainty set.

A. Intuitions

The solution to (P4) is still conservative and can be further
improved. The conservativeness comes from the generated un-
certainty sets Ui,1 and Ui,2. For example, we determine that
all the uncertainty sets are approximated by ellipsoids, which
may not be optimal. Further, the constructed uncertainty sets are
independent of the specific forms of the constraints. Therefore,
there is a gap between the generated uncertainty set and the
optimal uncertainty set. Specifically, for uncertainty set Ui,1 and
the corresponding solution g, the following condition holds:

Pξ (ξ ∈ Ui,1) ≤ Pξ

(
T∩

t=1
{f t

i (g
t; ξt) ≤ f i}

)
, ∀i, ∀t. (31)

This gap comes from the RO framework itself, even with
Pξ(ξ ∈ Ui,1) = ρi,1, such a gap still exists and makes our solu-
tion conservative. To handle this problem, we make an important
observation:

Fact 2: For any feasible solution g = [gt, ∀t], it holds:

Pξ (ξ ∈ Ui,1) = Pξ

(
T∩

t=1
{f t

i (g
t; ξt) ≤ f i}

)
, (32)

if

Ui,1 = {ξ| T∩
t=1

{f t
i (g

t; ξt) ≤ f i}}, ∀i. (33)
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This observation inspires us to construct a better uncertainty
set with the shape closely related to the solution g. Specifically,
when we obtain uncertainty sets Ui,1, Ui,2 and get the solution
g, to reduce the gap in (31), we can further reconstruct the
uncertainty set with the shape specified by (33) based on g.

B. Uncertainty Set Reconstruction

To implement this idea, we estimate the following uncertainty
sets:

Ui,1 =

{
ξ| T∩

t=1
{f t

i

(
ĝt; ξt

) ≤ f i + si,1}
}
, (34)

Ui,2 =

{
ξ| T∩

t=1
{f t

i

(
ĝt; ξt

) ≥ −f i − si,2}
}
. (35)

We again split the dataset into Dξ,1, Dξ,2 with sizes n1 and
n2. Dξ,1 is adopted for estimating ĝ, and Dξ,2 is adopted for
estimating si,1, si,2. Again, we only constructUi,1 as the process
to construct Ui,2 following exactly the same routine.

1) Shape Estimation: We can run the RO algorithm straight-
forwardly based on Dξ,1 to get the initial solution ĝ.

2) Size Calibration: This calibration for si,1 is similar to that
in RO. The only difference comes from the joint constraints in the
uncertainty set. We design a customized dimension-collapsing
transformation function FRecon,1 as follows:

FRecon,1(ξ) = max
t

f t
i

(
ĝt; ξt

)− f i. (36)

Intuitively, for any sample ξ, FRecon produces a minimal
si,1 to make sure the constructed uncertainty set can cover this
sample. Similar to the RO, we transform each sample vector ξ(i)

in Dξ,1 into a scalar with FRecon(ξ
(i)), and then sort all these

FRecon(ξ
(i)) into a new set {ŝk, 1 ≤ k ≤ n2} ascendingly, i.e.,

ŝk ≤ ŝk+1.
The desired si,1 is estimated by:

si,1 = ŝk∗ , (37)

where the index k∗ satisfies:

k∗ = min

{
r :

r−1∑
k=0

Ck
n2
(ρi,1)

k(1− ρi,1)
n2−k ≥ ηi,1

}
. (38)

For si,2, the only difference is that, the dimension-collapsing
transformation function FRecon,2 should be:

FRecon,2(ξ) = max
t

−f t
i (ĝ

t; ξt)− f i. (39)

Similarly, the statistical feasibility of the constraints can be
guaranteed as long as condition (21) holds.

C. Solving ReconRO by Linear Transformation

Similarly, by solving the robust constraints with our estimated
uncertainty set, the original uncertainty set

hi
gg

t − hi
d(d

t
+ ξt) ≤ f i, ∀ξ ∈ Ui,1, ∀i ∈ A, ∀t, (40)

hi
gg

t − hi
d(d

t
+ ξt) ≥ −f i, ∀ξ ∈ Ui,2, ∀i ∈ A, ∀t, (41)

Algorithm 2: Reconstructed Robust Optimization (Re-
conRO).

Input Dξ, ρi,1, ρi,2, ηi,1, ηi,2, n1, n2, ns;
Output Solution g with statistical feasibility guarantees;
1: Divide Dξ into Dξ,1 and Dξ,2 with size n1 and n2;
2: Calculate the approximate objective function according

to (6);
Uncertainty Set Construction:
1: Calculate the approximated solution ĝ based on

Algorithm 1 and Dξ,1;
2: Construct the dimension-collapsing transformation

function Frecon,1, Frecon,2;
3: for i ∈ A do
4: Calculate Frecon,1(ξ

(i)), Frecon,2(ξ
(i)) for all

ξ(i) ∈ Dξ,2;
5: Sort all Frecon,1(ξ

(i)), Frecon,2(ξ
(i)) in ascending

order to get the lists Ŝ1, Ŝ2;
6: Calculate the index k∗ by (38) for Ui,1 and Ui,2;
7: Obtain si,1, si,2 based on k∗, Ŝ1, and Ŝ2;
8: end for

Optimization:
1: Solve (P5) the get the solution g;

can be transformed into the linear constraints:

hi
g(g

t − ĝt) + si,1 ≤ 0, ∀i ∈ A, ∀t, (42)

hi
g(g

t − ĝt)− si,2 ≥ 0, ∀i ∈ A, ∀t. (43)

Through such a transformation, we can derive the following
tractable RO:

(P5) min
T∑

t=1

(∑
i∈N

Ci(g
t
i) + R̂(Gt, Dt)

)
(44a)

s.t. Constraints (42), (43),

Constraints (1b)−(1d), (1h)−(1i). (44b)

(P5) is also a convex programming and can be efficiently
solved. The whole process is provided in Algorithm 2.

Remark: Our approach can be naturally extended to the unit
commitment economic dispatch (UCED) problem, since the
estimation process just relies on the samples. After obtaining the
uncertainty set, the statistically robust optimization for UCED
will be mixed-binary linear programming (due to the startup cost
and UC binary decision variables).

VIII. NUMERICAL STUDIES

We evaluate the performance of our proposed RO and Re-
conRO algorithm in terms of the dispatch cost, the constraint
violation rate, and the computational time on a 4-bus system and
the IEEE 118-bus system. The numerical study is performed by
Gurobi 9.5.0 [36] on a PC with Intel Core i5-11400F CPU and
16G RAM.
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Fig. 7. Network of the 4-bus case (modified from [38]).

TABLE II
4-BUS CASE: GENERATOR INFORMATION

A. Data Description and Experimental Settings

The renewable energy data are extracted from open data
provided by the Bonneville Power Administration (BPA) [37].
Specifically, it provides historical data on the predicted and
actual total outputs of wind turbines in the BPA control area
with a resolution of 5 minutes. The first numerical case we
adopt is modified from the 4-bus case in [38]. Fig. 7 illustrates
the network structure and line parameters. The parameters of
generators are listed in Table II, where the generation cost is a
piece-wise linear function, specified by slope ui($/MW) and the
intercept vi($), i = 1, 2, 3.

Another numerical study is based on the IEEE 118-bus Sys-
tem. The parameters for traditional generators (i.e., maximum
and minimum output, and up and down ramp limit) and line
capacities follow the settings in [39], To contrive the extreme
case of network congestion, we reduce the line capacities to
30% of their original values.

We set the shortage and excess risk costs γ1 and γ2 to be
$300/MWh and $20/MWh. All the stability requirement ρ and
confidence level η are set to be 0.95.

B. Competing Methods

We compare the following three categories of five different
approaches for ED:

1) Chance-Constrained Optimization: Chance constrained
optimization first estimates the distribution of ξ based on the
samples, and then obtains the explicit form of the joint CCs.
Further, it decomposes the joint CCs with the Bonferroni correc-
tion [40], and then solves the decomposed problem. We compare
two variants of chance constrained optimization by assuming
the error ξ follows Gaussian distribution (CC-G) and Laplace
distribution (CC-L).

The chance-constrained optimization requires the distribu-
tion type information of the random variables. With a better
distribution type assumption, the performance of CC should be
better. Specifically, Fig. (8) illustrates the net load forecast error.

Fig. 8. Gaussian and Laplace Estimations of Net Load Forecast Error.

Fig. 9. Objective Function Approximation Performance.

We can observe that the Laplace distribution has a better fitting
performance than the Gaussian distribution.

2) Robust Optimization (RO): We compare two RO algo-
rithms proposed in this paper: the basic robust optimization
algorithm (RO) and ReconRO.

3) Scenario Generation: SG is an approach to tackle the
chance-constrained optimization based on sampling the CCs.

C. Evaluation on 4-Bus System

We first evaluate the objective function approximation based
on our proposed ReconRO approach. Fig. 9 illustrates how the
dispatch cost and the running time change with increasing SAA
sample size. We can observe that the dispatch cost first goes
down and then flattens out, while the running time increases
linearly with a slope k = 0.15 s/100 samples. This coincides
with our theoretical trade-off results. We choose the SAA sample
size to be 50 in the subsequent experiments based on this trade-
off.

We perform 300 trails for the five different approaches in
limited sample case (n = 200) and sufficient sample case (n =
1000), and each trail involves a randomly generated dataset of
samples. The experimental results are provided in Tables III and
IV. We can observe that, with limited samples, the empirical
violation rates 1− ρ̂ and statistical violation rate 1− η̂ of CC-G
and SG are larger than 0.05, which do not satisfy the requirement.
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TABLE III
PERFORMANCE ON 4-BUS SYSTEM WITH LIMITED SAMPLES

TABLE IV
PERFORMANCE ON 4-BUS SYSTEM WITH SUFFICIENT SAMPLES

Fig. 10. Impact of Sample Size.

RO is too conservative, yielding a significantly higher dispatch
cost. ReconRO is less conservative than RO, yielding a signif-
icantly lower dispatch cost. CC-L enjoys the best performance
while satisfying the requirements for risk rates. This is because
CC-L can approximate the prediction error very well. On the
other hand, with sufficient samples (n = 1000), only CC-G
violates the risk rate constraints. Among the other approaches,
RO is still too conservative; ReconRO and SG enjoy the lowest
generation cost. The detailed calculation process is provided in
Appendix D.

Further, Fig. 10 illustrates how the dispatch cost and viola-
tion rate of different approaches change with the sample size.
Interestingly, the performance trend varies significantly between
different methods. Specifically, the dispatch cost and violation
rate of CC-L and CC-G do not change much with increasing
sample size. The reason is that these two approaches are mainly

Fig. 11. Impact of Stability Requirement ρ.

based on parametric estimation of the sample distribution, i.e.,
the mean and variance. The law of large numbers guarantees that
it only requires much fewer samples for such parametric estima-
tions, so more samples hardly lead to improvement. For SG, the
dispatch cost increases with sample size, but the violation rate
decreases. This is because SG generates the constraints based
on samples. When the sample size is limited, the amount of the
constraints is also limited, which leads to a solution with low cost
but often infeasible. On the other hand, with more samples, SG
can generate enough constraints to make the solution more con-
servative yet feasible to the CCs. In contrast, with the increase
in sample size, our ReconRO can better exploit the flexibility
reserve from the CCs and provide a less conservative solution
with an increasing but condition-satisfying violation rate. It also
outperforms all the other feasible approaches when the sample
size n ≥ 1000, demonstrating its remarkable performance.

Fig. 11 presents the performance of different approaches when
the stability requirementρdecreases. The sample sizen = 1000.
We can observe that the solution CC-G is always infeasible (the
curve is above the grey risk range curve in Fig. 11(b)), and
when ρ < 0.85, the solution of CC-L is always infeasible. This
indicates that CC methods are not always guaranteed to satisfy
the CCs. On the other hand, the solution of SG is always feasible
and performs more economically when ρ decreases. In contrast,
it is interesting to find that the violation rate curve of ReconRO
is always lower but closely approaches the allowed risk range
curve, which indicates that it can exploit the flexibility reserve
provided by the CCs. The dispatch cost of ReconRO also drops
quickly when ρ decreases.

In summary, these approaches have the following properties:
� CC: First, CC often strongly relies on the distribution

assumption. With a more accurate distribution assumption,
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TABLE V
PERFORMANCE ON 118-BUS SYSTEM

Fig. 12. Time Consumption.

it can enjoy a good economic performance (like CC-L).
Second, it is not sensitive to the sample size. Although
it can perform well with limited data, the performance
doesn’t change when the sample size increases. Finally,
it cannot always guarantee the violation rate requirements.

� RO: RO is the most conservative approach with the highest
cost in almost all cases. However, it is also the safest
approach and never violates the constraints.

� ReconRO: Our ReconRO can stably guarantee the violation
rate requirements. When the sample size increases, its
economic performance gradually improves. In most cases,
it outperforms the other constraint-satisfying approaches.

� SG: SG is strongly dependent on the sample size. When
the sample size is limited, it cannot satisfy the violation
rate requirement. And when the samples are enough, it can
achieve an economic performance close to ReconRO with
a significantly longer running time.

D. Evaluation on IEEE 118-Bus System

We evaluate the performance of our algorithm based on the
IEEE 118-bus system. Table V illustrates the extra cost (refer
to the gap to the optimal dispatch with accurate prediction)
and empirical violation rate for different approaches. We can
observe that the violation rates of all approaches meet the
requirements. RO is still the most conservative approach. Our
ReconRO achieves the lowest dispatch cost among all methods
and reduces the extra cost by 1.39% compared with the optimal
approach.

For the computational efficiency, Fig. 12 illustrates the run-
ning times of different approaches on the 4-bus system and
IEEE 118-bus system. CC-G, CC-L and RO enjoy the shortest
computation time. The ReconRO takes 70% more computation
time since it contains two ROs in the solution process. The
ReconRO can be performed on the IEEE-118 bus system within
30s. The SG is the most time-consuming approach, which takes
roughly 100 times more running time than ReconRO. This

demonstrates that our ReconRO simultaneously achieves good
economic performance and high computational efficiency.

IX. CONCLUSION

In this paper, we introduce the notion of statistical feasibility
and the formulation of statistically feasible ED. To tackle the
statistically feasible ED, we propose a robust sample-adaptive
optimization with statistical feasibility guarantees. To overcome
the conservativeness of RO, we further propose a reconstruction
approach to generate the constraint-specific uncertainty sets
and then design the corresponding ReconRO for effective ED.
The numerical studies based on a 4-bus system and the IEEE
118-bus system verify our methods’ performance and sample
adaptiveness.

APPENDIX

A. Proof for Theorem 1

The approximation error e(ns) with sample size ns satisfies:

e(ns) =

T∑
t=1

(
R̂(Gt, Dt)−R(Gt, Dt)

)
. (45)

Combining with (6) yields:

e(ns)=
T∑

t=1

⎛⎜⎝ 1

ns

∑
ξ(j)∈Ds

ξ

(
R̃(Gt, ξ(j),t)−R(Gt, Dt)

)⎞⎟⎠. (46)

Denote
∑T

t=1 R̃(Gt, ξ(j),t) as A(ξ(j)). Standard manipula-
tions simplify e(ns) as follows:

e(ns) =
1

ns

∑
ξ(j)∈Ds

ξ

(
A(ξ(j))−A(ξ)

)
, (47)

where A(ξ(j)) is i.i.d. for different j, and A(ξ) denotes the
expectation of A(ξ(j)) for all j.

Assuming each element in ξ can be bounded by [ξ, ξ], we can
derive the following condition for A(ξ):

max
ξ

A(ξ)−min
ξ

A(ξ) ≤ T max(γ1, γ2)(ξ − ξ), (48)

≤ T
√
γ2
1 + γ2

2(ξ − ξ). (49)

Plugging (49) and the Hoeffding’s inequality [41] into (47)
immediately yields our results.

B. Proof for Corollary 1

For the approximation error, Theorem 1 theoretically ad-
dresses the error as follows:

P (|e(ns)| ≥ Δ) ≤ 2 exp

(
− 2nsΔ

2

T 2(γ2
1 + γ2

2)(ξ − ξ)2

)
, (50)

where ns denotes the sample size.
It shows that given an upper limit of error Δ, the probability

that the absolute value of approximation error is larger than Δ
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is smaller than 2 exp(− 2nsΔ
2

T 2(γ2
1+γ2

2)(ξ−ξ)2
). Eliminating the inde-

pendent parameters γ1, γ2, ξ, ξ, and Δ, we can directly obtain
that such a probability decreases at the rate of O(exp(−ns/T

2))
with the increase of sample size ns.

For the computational complexity, we use sample average
approximation (SAA) to approximate the risk cost R(Gt, Dt)
as follows:

R̂(Gt, Dt) =
1

ns

∑
ξ(j)∈Ds

ξ

R̃(Gt, ξ(j),t), (51)

where

R̃(Gt, ξ(j),t) = γ1

(∑
i∈M

(d
t
i + ξ

(j),t
i )−Gt

)+

+ γ2

(
Gt −

∑
i∈M

(d
t
i + ξ

(j),t
i )

)+

. (52)

and

(x)+ = max{x, 0}. (53)

Since a linear transformation can easily remove the (·)+
operator, the derived sample average R̂(Gt, Dt) is essentially
a linear function of the decision variable gti . However, removing
the term with (·)+ operator implicitly includes one additional
decision variable, i.e., to represent a variable (x)+. Hence, we
need to include at least one more variable y with the following
constraints1:

y ≥ x, and y ≥ 0. (54)

Specifically, the number of terms with (·)+ operator is 2nsT .
Therefore, the number of implicit decision variables is O(nsT ).
This concludes our proof.

C. Proof for Theorem 4

Consider the following robust constraints:

hi
gg

t − hi
d(d

t
+ ξt) ≤ f i, ∀ξ ∈ Ui,1, ∀i ∈ A, ∀t, (55)

hi
gg

t − hi
d(d

t
+ ξt) ≥ −f i, ∀ξ ∈ Ui,2, ∀i ∈ A, ∀t. (56)

We can observe that the random variable ξt is with the additive
relation to the decision variables gt. Therefore, constraints (55),
(56) can be transformed into the following form:

hi
gg

t − hi
dd

t ≤ f i − αt
i,1, ∀i ∈ A, ∀t, (57)

hi
gg

t − hi
dd

t ≥ −f i + αt
i,2, ∀i ∈ A, ∀t, (58)

where αt
i,1 and αt

i,2 satisfy:

αt
i,1 = −min hi

dξ
t (59)

1Essentially, such a transformation only guarantees y ≥ (x)+ instead of
y = (x)+. To strictly enforce y = (x)+, we need to include integer variables.
However, it can be avoided in our problem, since we target to minimize the total
cost, and a larger y will lead to a higher risk cost. Therefore, all terms with y are
minimized in the solution, yielding y = (x)+. This is also a commonly adopted
transformation for problems with such a property.

s.t. (ξ − μ)T M−1 (ξ − μ) ≤ si,1, (60)

αt
i,2 = max hi

dξ
t (61)

s.t. (ξ − μ)TM−1(ξ − μ) ≤ si,2. (62)

The Slater’s condition [42] further guarantees the strong
duality condition, yielding:

αt
i,1 = −max

λ
min
ξ

hi
dξ

t + λ((ξ − μ)TM−1(ξ − μ)− si,1)

s.t. λ ≥ 0,

αt
i,2 = max

λ
min
ξ

−hi
dξ

t+λ
(
(ξ−μ)TM−1(ξ−μ)−si,2

)
s.t. λ ≥ 0.

By the positive definitiveness of the covariance matrix M ,
we can directly solve the quadratic programming and derive the
objective explicitly to characterize αt

i,1, αt
i,2.

D. Details of the Experimental Calculation

We divide the samples into two equal parts for estimation (Set
X ) and for evaluation (Set Y), respectively. For calculating the
items in Tables II and III in our work, we first randomly generate
300 sample sets with size 200 (Table II) and size 1000 (Table III)
by sampling the data from Set X for 300 times. Based on each
generated sample set, we conduct the estimations for different
approaches (e.g., uncertainty set, distribution estimation), and
then conduct the economic dispatch with different approaches
based on the predicted netload (consisting of the basic load from
the system parameter and the turbine’s output) and the samples
of the prediction error of Set Y on the system.

Specifically, the average cost, average empirical violation rate
1− ρ̂ and the average statistical violation rate 1− η̂ in the table
are calculated as follows:

Cost =
1

300 · ||Y||
∑
Dξ

∑
ξ∈Y

Cost(Dξ, ξ), (63)

1− ρ̂ =
1

300 · ||Y||
∑
Dξ

∑
ξ∈Y

Ivio(Dξ, ξ), (64)

1− η̂ =
1

300

∑
Dξ

I

⎛⎝ 1

||Y||
∑
ξ∈Y

Ivio(Dξ, ξ) > 0.05

⎞⎠ , (65)

where Cost(Dξ, ξ) represents the dispatch cost with the sample
set Dξ and real prediction error ξ; Ivio(Dξ, ξ) denotes the
indicator function that the solution violates any constraint (1)
or not (0) with the sample set Dξ and real prediction error ξ;
I( 1

||Y||
∑

ξ∈Y Ivio(Dξ, ξ) > 0.05) is the indicator function that
indicates whether the average violation rate exceeds 0.05 (1) or
not (0) with Dξ.
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