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Abstract—The integration of distributed energy resources,
particularly wind energy, presents both opportunities and chal-
lenges for the modern electrical grid. On the supply side,
wind farms frequently encounter penalties due to wind power’s
intermittency and variability. The incorporation of energy storage
systems can mitigate these penalties through real-time power
adjustments. However, the uncertainties in future renewable
generation significantly impede optimal storage control, and
existing algorithms either lack theoretical guarantees, or fail
to effectively leverage data to attain better performance. This
paper effectively addresses this dichotomy by bridging the gap
between data utilization and theoretical guarantees based on
the Markov decision process. Specifically, we first introduce a
one-shot online storage control algorithm that utilizes historical
data to make near-optimal decisions with theoretical performance
guarantees. To further enable continuous learning from new
data, we develop an online learning-based self-improving storage
control algorithm, underscoring its asymptotic optimality. The
numerical study using field data demonstrates the efficacy of the
proposed approach.

Index Terms—Distributed energy resource, wind power,
storage control, online optimization.

I. INTRODUCTION

W ITH the widespread grid integration of distributed
energy resources, especially renewable energies, both

the power shortage in the grid and the carbon-related eco-
logical challenges are well alleviated. However, the inherent
intermittency and unpredictability of renewable sources [1]
present considerable threats to the grid’s stability and relia-
bility, leading to heightened operational costs for the power
system.

Wind farms, as wind power suppliers integrated into the
power grid, are striving to ensure a stable and predictable
power supply. Specifically, wind farms often undertake power
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supply contracts with the bulk grid’s independent system
operator (ISO) [2]. The contract specifies the timing and
quantity of electricity that should be delivered to the grid,
which is usually determined based on wind power forecasts.
However, real-time wind power generation frequently diverges
from these forecasts, resulting in a disparity between the
committed and actual power generation. Consequently, wind
farms are subjected to penalty costs for this deviation, which
are paid to the grid for the procurement of real-time energy
balancing services.

To alleviate these penalties, wind farms can employ energy
storage systems (ESS) to stabilize the wind power output.
Specifically, at any given time, the ESS can either be charged
by wind power or discharged to the grid, which can effectively
regulate the amount of the delivered wind power. However,
in practice, the uncertainties in both wind power generation
and real-time penalty costs considerably complicate effective
storage control. Moreover, the physical constraints of the ESS,
i.e., the storage capacity, and the charging and discharging
power limits, prevent the complete containment of energy
imbalances.

To tackle these challenges, in this paper, we propose
an online storage control algorithm based on the Markov
decision process (MDP), which can effectively learn from
historical data and make the nearly-optimal storage control
decisions with theoretical guarantees. To facilitate continuous
learning from new data, we further design a self-improving
online storage control algorithm based on the online learning
scheme, and we theoretically demonstrate its asymptotical
optimality.

A. Related Works

The problem of storage system operation has attracted
increasing interest in the power community. Most recent works
mainly focus on utilizing storage systems to improve power
system operation. For example, Mahmoodi et al. introduce
a distributed economic dispatch strategy for microgrids with
multiple ESS in [3]. Shi et al. design a control algorithm for
a battery storage system for simultaneous peak shaving and
frequency regulation through a joint optimization framework
in [4]. Uddin et al. propose a decision-tree-based algorithm
for generation scheduling and storage control in the islanded
microgrids [5]. These works mostly focus on day-ahead
storage scheduling, whereas our study addresses online storage
control for stable wind power commitment.
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The online storage control problem has garnered substantial
research interest lately due to its complexity and signifi-
cance for the modern power grid. Among notable studies,
Malysz et al. present an online storage control method based
on model predictive control (MPC) with a mixed-integer-
linear-programming (MILP) optimization formulation in [6].
Dabbagh et al. design an efficient storage control strategy
based on MPC assuming limited-horizon future knowledge
in [7]. Besides the MPC-based approach, Wu et al. design a
threshold-based storage control policy integrating the forecast
of future information in [8], [9]. These works aim at inte-
grating wind power prediction to improve the performance
of storage control. However, they often lack theoretical
performance guarantees and are highly sensitive to prediction
accuracy. In contrast, our approach does not rely on any future
prediction and provides asymptotic theoretical guarantees.

There are also various works targeted to design the storage
control algorithm with theoretical performance guarantees.
For example, Koutsopoulos et al. propose a threshold-based
control policy for storage control assuming that the power
demand arrival and service processes follow the Poisson
process in [10]. Chau et al. further design a provable
threshold-based online storage control algorithm without addi-
tional information about future demand in [11]. Besides the
threshold-based online algorithm, Lyapunov optimization is
often leveraged for storage control. For example, Huang et al.
design a joint demand response and ESS management algo-
rithm for a power-consuming entity based on Lyapunov
drift-plus-penalty optimization in [12]. Qin et al. propose an
online modified greedy algorithm based on the Lyapunov
optimization for storage control on the demand side with
sub-optimality bound analysis in [13], [14]. Zhong et al.
design an online control approach for real-time distributed
ESS sharing based on the Lyapunov optimization framework
in [15]. However, these works mainly focus on the storage
control problem for the demand side, and do not utilize
historical data. In practice, effective exploitation of historical
data helps design more powerful online algorithms. To this
end, in this paper, we propose a data-driven online storage
control algorithm based on MDP. To the best of our knowl-
edge, only very limited works focus on the storage control
based on MDP [16], [17]. And these works often have strict
requirements on the time length of the storage control process,
and lack theoretical guarantees. In contrast, we design a one-
shot decision algorithm without the time length requirement,
and include an adjustable parameter to trade-off the short-term
and long-term interests. Also, our algorithm can leverage both
the historical data and the continuously collected new data to
improve the performance with theoretical guarantees.

B. Our Contributions

Our major contributions can be summarized as follows:
• One-shot Decision-making Algorithm Design in Ideal

Condition: We propose a computationally efficient one-
shot decision framework for online storage control. We
also utilize MDP to optimally design the storage control
algorithm with perfect historical information.

Fig. 1. Structural Diagram.

• Data-driven Algorithm Implementation with Theoretical
Guarantees: We propose a practical approach to imple-
menting the one-shot decision algorithm with limited data
and computational resources. We also characterize how
limited data and discretization will influence the accuracy
of our algorithm, respectively. In addition, the regret
bound of our algorithm is derived.

• Self-improving Algorithm Design with Theoretical
Guarantees: We propose a self-improving one-shot
decision algorithm, which can continuously utilize the
new data during the control process to improve the
algorithm performance. We prove that the self-improving
algorithm can achieve a sub-linear regret with asymptotic
optimality.

The remainder of this paper is organized as follows:
Section II introduces the storage control problem. Section III
proposes the one-shot decision algorithm based on MDP.
Section IV implements the data-driven one-shot decision
algorithm and provides theoretical guarantees for the proposed
algorithm. Section V further adopts the notion of online
learning to improve the one-shot decision algorithm with a
no-regret performance guarantee. Section VI evaluates the
performance of our proposed approaches, and Section VII
concludes our paper. The structural diagram of our proposed
algorithm is visualized in Fig. 1. All necessary proof sketches
are provided in the Appendix.

II. SYSTEM MODELS

Consider a wind farm that delivers power to the grid based
on an electricity supply contract. Specifically, the committed
wind power supply amount at time t is ŵt. The committed
wind power supply is determined by the wind power forecast
from the wind farm or the ISO. Such forecast can be done
from minute-ahead to day-ahead [18], [19], [20]. And in real-
time, the actual wind power generation wt sequentially reveals
at each time t. With the equipment of storage, the wind farm
can either charge the storage with amount u+

t by wind power,
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Fig. 2. System Structure.

or discharge the storage with amount u−
t to the grid at time t.

Consequently, the eventually delivered power gt satisfies:

gt = wt + v−
t − v+

t . (1)

When the mismatch between commitment ŵt and the
delivered power gt exists, the wind farm will be charged for
a penalty cost1 ct(ŵt, gt) as follows:

ct
(
ŵt, gt

) = p+
t max

(
gt − ŵt, 0

) + p−
t max

(
ŵt − gt, 0

)
, (2)

where p+
t and p−

t denote the unit penalty prices for wind power
generation surplus and shortage at time t, respectively. The
system model is visualized in Fig. 2.

Remark: With the growing development of wind power
prediction technologies [21], the real-time energy mismatch
between prediction (the day-ahead commitment power) and
the real-time wind power generation can be well reduced. And
the performance of most storage control algorithms will be
promoted. In contrast, we focus on the case that the prediction
error still exists and leads to the energy mismatch between
commitment power and real generation power.

The wind farm aims to minimize the accumulated mismatch
penalty across all T time slots by reasonably utilizing the
storage system. Mathematically, the storage control problem
can be formulated as follows:

(P1) min
v+

t ,v−
t ,∀t

T∑

t=1

ct
(
ŵt, gt

)
(3)

s.t. gt = wt + v−
t − v+

t ,∀t, (4)

SoC1 = C

2
, (5)

SoCt+1 = SoCt + η+v+
t − η−v−

t ,∀t, (6)

η+v+
t ≤ C − SoCt,∀t, (7)

η−v−
t ≤ SoCt,∀t, (8)

v+
t ≤ wt,∀t, (9)

v+
t , v−

t ≥ 0,∀t, (10)

v+
t v−

t = 0,∀t. (11)

In the optimization problem, the decision variables at time
t include:

• v+
t : generated wind power that is charged to the energy

storage;
• v−

t : discharged energy from the energy storage to the grid;

1The penalty cost of wind power mismatch can be generalized to different
cases. Please refer to the Appendix for more details.

And the other functions, latent variables, and system param-
eters include:

• ct(·): penalty cost at time t;
• ŵt: committed wind power supply at time t;
• wt: wind power generation at time t;
• T: duration for storage control decisions;
• p+

t , p−
t : unit grid penalty prices for power generation

shortage and surplus at time t, respectively;2

• gt: actual supplied power at time t;
• SoCt: state-of-charge (SOC) of storage at time t;
• C: energy storage capacity;
• η+, η−: charging and discharging efficiencies of storage;
Constraint (4) characterizes the delivered power; con-

straints (5) and (6) describe the dynamics of storage; and
constraints (7) and (8) represent the storage capacity limits.
Constraint (9) and (10) indicate the upper and lower limits of
storage control actions, and constraint (11) ensures that the
storage cannot be charged and discharged simultaneously.

The challenges for tackling this problem are twofold. First,
the optimization problem implicitly involves integer decision
variables in constraint (11), making our problem an MILP.
In practice, the time length T can be very large, and solving
such a large-scale MILP may face significant computational
burdens [22]. The second challenge comes from the uncertain-
ties of the future parameters. Specifically, at any time t0, the
unit penalty prices p+

t , p−
t , and wind power generation wt for

all t > t0 in the future are unknown, which hinders effective
storage control.

To tackle these issues, in the next section, we introduce an
online algorithm with one-shot decision-making in a sequential
manner.

III. ONLINE ALGORITHM DESIGN: THE BASICS

In this section, we first formulate the one-shot online
decision-making problem of storage control. Then, we intro-
duce the notion of the storage value function and propose the
framework of the one-shot decision-making algorithm. Finally,
we implement the algorithm by calculating the storage value
function based on MDP.

A. One-Shot Decision-Making Problem

Due to the inherent uncertainties associated with penalty
prices and renewable energy generation, it is impractical to
obtain all future optimal storage control decisions. Therefore,
in practice, we often resort to sequential storage control.
Specifically, at each time t, we determine the current storage
control actions v+

t , v−
t , ct based on the available information.

Consequently, we establish the following one-shot storage
control problem at time t as follows:

(P2) min
v+

t ,v−
t

ct
(
ŵt, gt

) +
∞∑

τ=t+1

γ τ−t
E
(
cτ

(
ŵτ , gτ

))
(12)

s.t. gt = wt + v−
t − v+

t , (13)

SoCt+1 = SoCt + η+v+
t − η−v−

t , (14)

η+v+
t ≤ C − SoCt, (15)

2They are latent variables in ct(·).
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η−v−
t ≤ SoCt, (16)

v+
t ≤ wt, (17)

v+
t , v−

t ≥ 0, (18)

v+
t v−

t = 0. (19)

We discern that, compared with (P1), the
constraints (13)–(19) in (P2) only involve one-shot decision
variables at time t, which indicates a much less computational
burden.

Function ct(ŵt, gt) in the objective denotes the penalty
cost at time t, and

∑∞
τ=t+1 γ τ−t

E(ct(ŵτ , gτ )) denotes the
cumulative discounted penalty in the future. Note that, we
adopt the temporal discount ratio γ ∈ (0, 1) to characterize the
wind farm’s preference for short-term revenue or long-term
revenue, which is a commonly adopted notion for long-
term decision makings [23]. Specifically, γ is an adjustable
parameter, and when γ is small, the future penalty term also
becomes smaller, which means the wind farm operator is
myopic. On the other hand, when γ is large, the wind farm
has a long-term vision, and tends to treat the penalties of all
time equally.

The one-shot decision problem (P2) seems to be a linear
programming3 with a significantly smaller problem scale com-
pared with (P1). However, (P2) is fundamentally nonlinear.
This is because complex correlations exist between the current
decisions at time t and the future penalty costs for τ > t.
Intuitively, the current decision affects the storage’s SoC,
which then influences the storage control decisions in the
future. Additionally, the future decision problems involve the
uncertain parameters wτ , p+

τ , and p−
τ , which makes directly

solving (P2) extremely challenging.

B. Reformulation Based on Storage Value Function Modeling

Despite the challenges, we can discern that, the SoC of
storage bridges the one-shot decisions across different time t,
which accounts for the temporal correlation. This observation
allows us to reformulate the original problem (P2) into the
following much simpler form:

(P3) min
v+

t ,v−
t

ct
(
ŵt, gt

) + γ Fπ
t+1(SoCt+1) (20)

Fπ
t+1(SoCt+1) =

∞∑

τ=t+1

γ τ−t
E
(
cτ

(
ŵτ , gτ

))
, (21)

Constraints (13)−(19). (22)

It can be observed that, in this problem, the objective
function only consists of the current cost ct(ŵt, gt) and
future cost γ Fπ

t+1(SoCt+1), which are influenced by gt and
SoCt+1, respectively. Specifically, we term Fπ

t+1 as the storage
value function, which represents the accumulated future cost
given a specific SoC. Note that, the storage value function
Fπ

t+1(SoCt+1) is affected by both the adopted storage control
policy π in the future and SoCt+1. The expectation in (21) is
taken over all possible p+

τ , p−
τ , and wτ in the future.

3It should be noted that, (P2) still contains a nonlinear constraint in (19).
However, it can be easily transformed into linear constraints by discussing
the two cases v+

t = 0 and v−
t = 0 separately.

Algorithm 1 One-Shot Decision Algorithm π

Input: Storage capacity C; function Fπ
t (x) for all t.

Output: Storage control policy v+
t , v−

t at time t;

1: for t = 1, 2, . . . do
2: Obtain parameters wt, ŵt, p+

t , p−
t in real time.

3: Solve the problem (P3);
4: Return the solved storage control policy at time t;
5: end for

Essentially, (P3) trades off between the current cost and the
future cost by deciding gt and SoCt+1. If we accurately knew
the value function Fπ

t (x) for all t and for all x ∈ [0, C], we
could have solved problem (P3) to obtain the optimal one-shot
solution that minimizes the expected total cost. Algorithm 1
illustrates this one-shot decision process.

C. MDP-Based Value Function Estimation

The remaining hurdle is to determine the value function
Fπ

t (SoC). In this part, we propose an approach to derive the
value function Fπ

t (SoC) utilizing the tools from MDP. For sim-
plicity, we assume the function Ft(SoC) to be homogeneous
for all t. This makes our algorithm time-independent, which is
a common choice for many online algorithms [11], [13]. We
also show how to generalize this assumption by considering
heterogenous Ft(SoC) for different t at the end of this section.

Before solving the value function, it is demonstrated that the
one-shot decision problem (P3) can be formally transformed
into MDP in the following manner:

Markov Decision Process (S,A,P,R):
• States S: Any state s ∈ S is composed of the

penalty prices p+, p−, the committed and real wind
power generation ŵ and w, and SoC. Formally, s =
(p+, p−, ŵ, w, SoC);

• Actions A: Any action a ∈ A is composed of two
components: the charge amount v+ and discharge amount
v−. Formally, a = (v+, v−);

• Transition probability P: P is the transiting probability
matrix Pa = {Pr(st+1 = s′|st = s, at = a),∀s, s′ ∈
S, a ∈ A}, which includes the probability of transiting
from state s to s′ with action a for all s, s′ and a;

• Reward R: R is the immediate reward (penalty in our
case) after transiting from state s to state s′ due to
action a, i.e., R = {r(s, a),∀s, a}. Specifically, in the
one-shot decision problem, the penalty r(s, a) equals the
negative of the penalty, i.e.,

r(s, a) = p+ max
(
w − ŵ, 0

) + p− max
(
ŵ − w, 0

)
.

We can observe that, for the storage control problem, the
state space S and the action space A are known. The reward
R is also known once the state s and action a are decided.
The only unknown comes from the transition probability P .

However, some important observations for P can simplify
the problem. Specifically, we can divide the state variables s =
(p+, p−, ŵ, w, SoC) into one deterministic state and several
random states. The deterministic state is SoC, which can
be determined following Eq. (14) without any uncertainty.
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And the random states include p+, p−, ŵ, w, which are fully
random.4 In fact, they are independent of SoC and the control
decisions. The observations enable us to derive the following
conditions for the value function F(SoC):

F(SoC) =
∫

q∈Q
R∗(q, SoC)f (q)dq,∀SoC ∈ [0, C], (23)

where we define q as the random state variables with q =
{p+, p−, ŵ, w}. The set Q contains all possible q, and f (q)

denotes the probability density function (pdf ) of the state q.
R∗(q, SoC) denotes the cumulative cost with SoC under state q,
satisfying:

R∗(q, SoC) = min
v−,v+ c(q, g) + γ F(SoC + �) (24)

s.t. � = η+v+ − η−v−, (25)

Constraints (13)−(19), (26)

where � denotes the variation of SoC after storage control
actions, and function c(q, g) satisfies:

c(q, g) = p+ max
(
g − ŵ, 0

) + p− max
(
ŵ − g, 0

)
. (27)

We can observe that, R∗(q, SoC) bridges F(SoC) with
different SoC through problem (24)–(26). Note that, this
estimation methodology can be easily extended to the case
considering heterogeneous Ft(s). We only need to include t as
a state parameter into S , which enables time-varying storage
value function estimation.

However, this system (23)–(26) is intractable for two rea-
sons. Firstly, the equations are with infinite dimensions and
variables due to the infinite possible values of SoC, which is
computationally intractable. Second, the pdf f (q) in Eq. (23)
is unknown, but can be potentially estimated from data. To
address these challenges, in the next section, we design a data-
driven approach to estimate the storage value function F(SoC)

with theoretical accuracy guarantees.

IV. ONLINE ALGORITHM DESIGN: DATA-DRIVEN

IMPLEMENTATIONS

In this section, we formally introduce how to implement
the online storage control algorithm based on limited samples.
Specifically, we first illustrate how to estimate F(SoC) based
on samples. Then, we implement the storage control algorithm
based on the estimation.

Suppose we have a set of historical data Q with amount
Ns, i.e., Q = {q1, q2, . . . , qNs}. Each piece of data qi con-
sists of the random state parameters at a single time slot,
i.e., qi = (p+

i , q−
i , ŵi, wi). These historical data samples will

be employed to estimate the storage value function.

A. Sample-Based Algorithm Design

As we mentioned in Section III, calculating F(SoC) poses
two key challenges. The first is associated with the continuity
of F(s), and the second originates from the unknown nature of
f (p). We address these two challenges separately as follows:

4Note that, the committed wind power ŵ is essentially not random.
However, only the generation mismatch w−ŵ exists in our problem, and such
mismatch can be regarded as a random variable.

1) SoC State Discretization: We discretize the con-
tinuous SoC into finite discrete points, i.e., SoC ∈
{0, C

M , 2C
M , . . . ,

(M−1)C
M , C}. And we only need to estimate the

corresponding finite function values F(0), F( C
M ), F( 2C

M ), . . . ,

F(
(M−1)C

M ), F(C). At each time t, the resulting SoC can only
be one of the above values.

2) Data-Driven Sample Average Estimation: Due to the
difficulty of obtaining the true pdf of f (q), where q =
(p+, p−, ŵ, w), we use the sample average approximation
to estimate the value function in (23). Specifically, given
a set of data Q with sample size Ns, the value function
F(SoC) satisfies:

F(SoC) = 1

Ns

Ns∑

i=1

R∗(qi, SoC). (28)

Based on the above two methods, we design the data-driven
estimation as follows:

F

(
kC

M

)
= 1

Ns

Ns∑

i=1

R∗
(

qi,
kC

M

)
,∀k ≤ M, (29)

where R∗(qi,
kC
M ) denotes the cumulative cost with SoC kC

M
under state qi, which is defined as follows:

R∗
(

qi,
kC

M

)
= min

v−,v+ c(qi, g) + γ F

(
kC

M
+ �

)
(30)

s.t. g = wi + v− − v+, (31)

Constraints (25)–(26), (32)

� + kC

M
∈

[
0,

C

M
,

2C

M
, . . . , C

]
. (33)

Although the above optimization contains integer variables,
all the variables only have finite possible values due to dis-
cretization. This helps us to make the following simplification:

Proposition 1: The constrained problem (30)–(33) can be
equivalently transformed into the following unconstrained
form:

R∗
(

qi,
kC

M

)
= min

0≤j≤M

(
h(qi, k, j) + γ F

(
jC

M

))
, (34)

where h(qi, k, j) is a deterministic constant and can be calcu-
lated in advance for all i, k, and j satisfying the following:

h(qi, k, j) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

p+
i max

(
wi − ŵi − (j−k)C

η+M , 0
)

+p−
i max

(
ŵi − wi + (j−k)C

η+M , 0
)
, j ≥ k,

p+
i max

(
wi − ŵi − η−(j−k)C

M , 0
)

+p−
i max

(
ŵi − wi + η−(j−k)C

M , 0
)
, j < k.

Then Eq. (29) can be transformed into a much simpler form:

F

(
kC

M

)
= 1

Ns

Ns∑

i=1

min
0≤j≤M

(
h(qi, k, j) + γ F

(
jC

M

))
,∀k. (35)

Conventionally, solving equations with the min operator
needs either an iteration approach or the integer programming.
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Algorithm 2 Online Storage Control (OSC) Algorithm
Input: Historical data Q = {q1, q2, ..., qNs}; Size of dataset

Ns; Discretization level M; Storage capacity C; Charging
and discharging efficiency η+, η−;

Output: Storage control policy v+
t , v−

t at each time t;

Value Function Construction:
1: for i = 1, 2, ..., Ns do
2: for k = 0, 1, ..., M do
3: for j = 0, 1, ..., M do
4: Solve h(qi, k, j) according to data qi.
5: end for
6: end for
7: end for
8: Solve problem (LP) in Eqs. (36)-(38) to obtain the value

function F
(

kC
M

)
for k = 0, 1, ..., M;

9: Linear interpolation of F
(

kC
M

)
for different k’s to get a

continuous function F(SoC);

Online Optimization:
1: for t = 1, 2, ... do
2: Obtain parameters wt, ŵt, p+

t , p−
t in real time.

3: Solve the problem (P4);
4: Return the solved storage control policy at time t;
5: end for

In contrast, we propose an equivalent linear programming to
accurately solve it:

(LP) min
yk,xk,i

M∑

k=0

yk (36)

s.t. yk ≥ 1

Ns

Ns∑

i=1

xk,i,∀k, (37)

xk,i ≥ h(qi, k, j) + γ yj,∀k,∀i,∀j. (38)

The following theorem illustrates the equivalence:
Theorem 1 [24, Th. 1]: The optimal solution y∗

k of (LP)
equals the solution of Eq. (35), which satisfies:

y∗
k = F

(
kC

M

)
,∀k. (39)

By solving (LP), we can obtain the value function F( kC
M )

and implement the online storage control problem. We can
observe that, with a growing discretization level M, the
problem scale increases in O(M2). The amount of data Ns

also contributes to the problem scale in O(Ns), though, even
with a large M and Ns (e.g., M = 50 and Ns = 100), linear
programming is one of the most well-investigated optimization
problems, and can be solved very efficiently based on com-
mercial solvers. After obtaining F( kC

M ) for different k’s, we
can simply make linear interpolation to get a piecewise linear
approximation of the real value function F(SoC).

Based on the value function estimation, we can implement
the conceptual Algorithm 1 into a practical data-driven form
in Algorithm 2. Specifically, after obtained the value function
F(SoC), then at each time t, we first collect the real-time
parameters wt, ŵt, p+

t , p−
t . Parameters wt and ŵt denote

the real and committed wind power generations at time t,
respectively. p+

t and p−
t denote the unit energy surplus and

shortage penalty costs. Based on these parameters, we can
solve (P4) to calculate the optimal storage control policy v+

t
and v−

t at time t:

(P4) min
v+

t ,v−
t

ct
(
ŵt, gt

)

︸ ︷︷ ︸
Current Cost

+ F(SoCt+1)︸ ︷︷ ︸
Expected Future Cost

(40)

s.t. gt = wt + v−
t − v+

t , (41)

SoCt+1 = SoCt + η+v+
t − η−v−

t , (42)

η+v+
t ≤ C − SoCt, (43)

η−v−
t ≤ SoCt, (44)

v+
t ≤ wt, (45)

v+
t , v−

t ≥ 0, (46)

v+
t v−

t = 0. (47)

Specifically, the two decision variables of (P4) are v+
t

and v−
t , which denote the charging and discharging powers

of storage at time t. The objective in (40) is the sum of
current cost ct(ŵt, gt) at time t and the expected future cost
Ft+1(SoCt+1). (P4) minimizes the total costs of the current
time and the future.

Constraint (41) characterizes the total wind power supply;
constraint (42) describes the dynamics of storage; and con-
straints (43) and (44) represent the storage capacity limits.
Constraints (45) and (46) indicate the upper and lower limits of
storage control actions; constraint (47) ensures that the storage
cannot be charged and discharged simultaneously. Since both
ct(ŵt, gt) and F(SoC) are piecewise linear convex functions,
(P4) can be efficiently solved.

Remark: The whole algorithm is highly computationally
efficient. Specifically, the value function construction proce-
dure is only required to be done once before the online
optimization procedure begins, which solves a linear program
within several minutes. For the online optimization procedure,
we only need to solve a tiny-scale piecewise linear problem
(P4)5 with two variables v−

t , v+
t and seven constraints, which

can be solved very efficiently within 0.01 s.
Remark: Our approach can be easily extended to consider

the charging and discharging rate constraints. Specifically, we
only need to add linear constraints v+

t ≤ UR and v−
t ≤ DR into

(P1)-(P4), where UR and DR denote the maximal charging and
discharging rates. Such modification only introduces additional
linear constraints and does not influence the problem structure
and the analysis.

B. Theoretical Guarantees

The discretization and limited data will inevitably impact
the accuracy of the estimation, and subsequently influence
the algorithm’s performance. In this part, we theoretically
characterize the accuracy of value function estimation regard-
ing the discretization and limited data. Then, we derive the

5The piecewise linearity of the objective is due to the piecewise linearity of
both ct(ŵt, gt) and F(SoCt+1). The binary constraint in (47) can be released
by considering v+

t = 0 and v−
t = 0 separately.
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performance gap between our algorithm and the optimal online
algorithm in terms of regret.

Denote F̂( kC
M ) and F∗( kC

M ) as the estimated and actual
value function with SoC kC

M , respectively. We first analyze
how samples influence the accuracy of the value function
estimation, which is provided in the following theorem:

Theorem 2 (Value of Samples): Given a randomly sampled
dataset Q with sample size Ns, for any given k and error
bound θ , the estimated value function F̂( kC

M ) with discretiza-
tion level M satisfies:

Pr
(∣∣∣∣F̂

(
kC

M

)
− F∗

(
kC

M

)∣∣∣∣ ≥ θ

)

≤ 2 exp

(
−2Ns(1 − γ )4θ2

p2
max(C + �wmax)

2

)

, (48)

where pmax denotes the maximal penalty price, i.e.,

pmax = max
(
maxq∈Q p+, maxq∈Q p−)

, (49)

and �wmax denotes the maximal gap between wind power
forecast ŵ and real generation w, i.e.,

�wmax = maxq∈Q |ŵ − w|. (50)

This theorem elucidates the enhancement of value function
estimation accuracy via samples. Specifically, for any given
error range θ , when sample Ns increases linearly, the probabil-
ity of violating the error range decreases rapidly in O(e−Ns),
which demonstrates the value of data for storage control. Also,
a large penalty price pmax, a large storage capacity C, and
a large forecast error �wmax all contribute to a significant
estimation error, which is consistent with our intuition.

We also show how discretization influences the accuracy of
value function estimation by the following theorem:

Theorem 3 (Price of Discretization): Given a randomly
sampled dataset Q with sample size Ns, for any given k,
the estimated value function F̂( kC

M ) with discretization level
M satisfies:

∣∣∣∣F̂
(

kC

M

)
− F∗

(
kC

M

)∣∣∣∣ ≤ LC2 + 2MCpmax

M2(1 − γ )
, (51)

where L denotes the Lipschitz constant of the value function
F∗’s gradient.

This theorem indicates that higher discretization level M
results in the more accurate approximation of F∗(·) at the
rate of O(1/M). Also, a large penalty price pmax and storage
capacity C will make the estimation less accurate.

Based on these results, we finally characterize the gap in
performance between our algorithm and the optimal online
algorithm. We first introduce a comparative metric as follows:

Definition 1 (Expected Regret [23]): The expected regret of
an online algorithm π is defined as:

Rπ =
T∑

t=1

Eqt∈Q
(

ct
(
ŵt, gπ

t

) − min
gt

ct
(
ŵt, gt

))
, (52)

where gπ
t denotes the decisions of algorithm π at time t.

The expectation is taken over all possible states qt ∈ Q.
Intuitively, the regret Rπ represents the additional cost

induced by an algorithm π compared with the optimal online
algorithm.

Based on the definition, we can derive the following regret
bound for our proposed online storage control algorithm:

Theorem 4 (Linear Regret Bound): Given a randomly sam-
pled dataset Q with sample size Ns, the expected regret Rπ

of our algorithm with discretization level M satisfies:

Rπ = T · O
⎛

⎝Cpmax

M
+ 4

√
p6

max(C + �wmax)
2

Ns

⎞

⎠. (53)

We discern that, our online algorithm exhibits a linear regret
regarding T . The discretization level M and sample size Ns

jointly influence the coefficient of the linear term. Specifically,
the increasing discretization level M can mitigate the regret
at the rate of O(M−1), while an increasing sample size Ns

reduces the regret in O(M− 1
4 ). However, the discretization

process is independent of data, so in practice, we can choose
a large enough M, and solve the value function offline before
starting the storage control. Consequently, the sample size
Ns becomes the bottleneck of improving the algorithm’s
performance. In the next section, we will address this issue by
offering our algorithm the ability to continuously learn from
the new data during the control process, which can break the
linear-regret bound and achieves asymptotic optimality.

V. ONLINE ALGORITHM DESIGN:
SELF-IMPROVING APPROACH

In this section, we further enhance the online storage control
algorithm by enabling it to continuously learn from new data
and improve performance during the storage control process.
We also emphasize that the online learning algorithm can
break the linear regret bound and achieves an O(T

3
4 ) regret

performance.

A. Self-Improving Algorithm Design

Recall that, our proposed data-driven online algorithm
makes decisions by the estimated value function. If the
estimation is perfect, then the corresponding one-shot decision
can minimize the expected cost in the future. Therefore, in
order to improve the online algorithm, the crucial element is
continuously collecting new data during the control process
to refine the value function estimation, which is a simple and
famous philosophy known as online learning [25]. Specifically,
at each time t, we can include the newly collected data qt =
(p+

t , p−
t , ŵt, wt) into the dataset Q, and conduct the value

function estimation again. As time passes, the estimation with
a growing number of data can approach the accurate value
function.

However, the value function estimation requires solving
the linear programming in (LP). As time progresses, the
problem scale will continuously increase due to the expanding
dataset, and brings the computational burden. To tackle the
problem, we have a simple observation that, when the collected
data already possesses substantial volume, an additional data
sample has negligible impact on the estimated value function,
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Algorithm 3 Policy Iteration Algorithm
Input Discretization level M; storage capacity C; initial value

function F
(

kC
M

)
,∀k; historical dataset Q; dataset size Ns;

newly obtained data qt = (wt, ŵt, p+
t , p−

t );
Output The optimized value function F

(
kC
M

)
,∀k.

Initial Policy Generation:
1: Q = Q ∪ qt;
2: Ns = Ns + 1;
3: for i = 1, 2, ..., Ns do
4: for k = 0, 1, ..., M do
5: Ai,k = arg min0≤j≤M

(
h(qi, k, j) + γ F

(
jC
M

))
,∀k.

6: end for
7: end for

Policy Iteration:
1: while Policy Ai,k for all i, k do not change do
2: Update the value function F

(
kC
M

)
for all k based on

estimated action Ai,k,∀i,∀k;
3: Update the policy Ai,k for all i, j based on the updated

value function F
(

kC
M

)
,∀k;

4: end while
5: Return value function F

(
kC
M

)
,∀k;

and the resulting control policy alters minutely. Therefore, we
can leverage such consistency and accelerate the value function
estimation update process by incorporating the policy iteration
method [23].

Algorithm 3 summarizes the policy iteration algorithm.
Specifically, the policy iteration algorithm iteratively deter-
mines the optimal control policy for each possible scenario
based on the estimated value function from the previous round.
Then, following the estimated control policy, the algorithm
updates the value function based on the resolved control policy.
If the resolved control policies in two consecutive iterations are
identical, then the corresponding value function is accurately
updated. The policy iteration algorithm is frequently employed
in reinforcement learning due to its rapid update advan-
tage, which can also expedite our online estimation update
process.

Leveraging the policy iteration algorithm, we can even-
tually implement our self-improving online storage control
algorithm, which is presented in Algorithm 4.

B. Performance Analysis

In this part, we emphasize the asymptotic optimality of
our proposed self-improving algorithm. The following theorem
indicates the regret performance of our algorithm:

Theorem 5 (Sub-Linear Regret Bound): Given the dataset
Q with sample size Ns, the expected regret Rπ of the self-
improving online algorithm satisfies:

Rπ = O
(

T
4
√

Ns + T

)
. (54)

Algorithm 4 Self-Improving Online Storage Control (SOSC)
Algorithm
Input: Historical data Q = {q1, q2, ..., qNs}; size of dataset

Ns; discretization level M; storage Capacity C; charging
and discharging efficiency η+, η−;

Output: Storage control policy v+
t , v−

t at each time t;

Value Function Construction:
1: for i = 1, 2, ..., Ns do
2: for k = 0, 1, ..., M do
3: for j = 0, 1, ..., M do
4: Solve h(qi, k, j) according to data qi.
5: end for
6: end for
7: end for
8: Solve problem (LP) in Eqs. (36)-(38) to obtain the value

function F( kC
M ) for k = 0, 1, ..., M;

9: Linear interpolation of F
(

kC
M

)
for different k’s to get a

continuous function F(SoC);

Online Optimization:
1: for t = 1, 2, ... do
2: Obtain parameters qt = (wt, ŵt, p+

t , p−
t ) in real time.

3: Update dataset Q = Q ∪ qt;
4: Update the value function F( kC

M ) based on dataset Q
and the policy iteration algorithm;

5: Solve the problem (P3);
6: Return the solved storage control policy at time t;
7: end for

This theorem indicates that, our designed self-improving
algorithm can achieve an expected regret at the rate of O(T

3
4 ),6

which is sub-linear in T . It reveals the asymptotic optimality
of our algorithm:

lim
T−→∞

ŴT

W∗
T

= 1, (55)

where ŴT and W∗
T denote the accumulated costs of our

algorithm and the optimal online algorithm across T time slots,
respectively.

VI. NUMERICAL STUDIES

In this section, we evaluate the performance of our proposed
online storage control algorithms (OSC and SOSC) and the
other benchmark algorithms with field data.

A. Simulation Settings

To comprehensively validate the performance of our algo-
rithm under diverse system scales and scenarios, we have
undertaken a numerical study using three distinct datasets,
each representing a different system level:

• Region Aggregation Level: For this level, we utilized the
California aggregate wind power generation dataset from

6The discretization level M essentially influences the rate of the regret.
However, the discretization process is independent of data, and we can choose
a very large M in practice to eliminate the impact of discretization.
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CAISO [20]. This dataset comprises real wind power
generation data with a 5-minute resolution spanning from
January 2020 to December 2020.

• Wind Farm Level: At the wind farm level, we employed
the SDWPF wind farm generation dataset [26] from
Longyuan Power Group Corp. Ltd, China. This dataset
contains real wind farm power generation data with
a 10-minute resolution covering the same period from
January 2020 to December 2020.

• Wind Turbine Level: At the finest granularity, we utilized
the SCADA wind turbine-level generation dataset [27]
from Turkey. This dataset includes power generation data
for a single wind turbine at 10-minute intervals spanning
from January 2018 to December 2018.

To ensure consistency and comparability, we normalized
all data to the same order of magnitude and processed it
into 10-minute resolution data. The real wind power gener-
ation data w are directly obtained from the dataset, and the
committed wind power generation data ŵ are based on the
3-hour-ahead forecasts. We generated wind power forecasts
using a Long Short-term Memory (LSTM) model [28] with
one hidden layer comprising 128 units. The model took the
wind power generation data from the previous two days as
inputs and produced power generation forecasts for the next
3 hours at a 10-minute resolution. The shortage penalty price
equals the average electricity price of CASIO [20] with the
matching resolution and periods. The surplus penalty price is
set to be much smaller than the shortage penalty, conforming
to the Gaussian distribution with a mean of $10 and a standard
deviation of $1. Each storage control action occurred in
10-minute time slots. Additionally, we set C = 1000 KWh,
M = 20,7 η+ = 0.9, η− = 1.1, γ = 0.6. Moreover, we use
the data from the first 3 months to train the algorithms, and
utilize data from the subsequent 9 months for evaluation.

B. Competing Methods

We compare our algorithm with the following 6 benchmark
approaches:

• Greedy Algorithm (GA): GA charges and discharges the
storage greedily. Specifically, whenever the generation
shortage or surplus exists, GA charges or discharges the
storage as much as possible to serve the grid until the
storage is empty or reaches capacity.

• Lyapunov Optimization-based Online Algorithm (LYA):
The Lyapunov algorithm decides the control actions by
optimizing the upper bound of the Lyapunov drift-plus-
penalty function [13].

• Model Predictive Control (MPC): The MPC predicts the
future information (p+

t , p−
t , ŵt, wt) in advance, and then

solves the optimization based on prediction and conducts
the storage control policy at the current time slot [6]. We
adopt the fully connected neural network (FCNN) for the
price and generation forecasts.

7In practice, setting M = 20 to 30 is often enough to approximate the value
function curve with enough accuracy and short computation time (typically
less than 5 minutes).

Fig. 3. Value Function Estimation.

• Threshold-based Online Algorithm (TOA): TOA decides
whether and how much to charge and discharge according
to whether the electricity price is above a threshold [11].

• Deep Q Learning Algorithm (DQN): DQN is an advanced
reinforcement learning algorithm that trains a three-
layered neural Q-network to learn the optimal storage
control strategy based on the continuous state parameter
inputs [29].

• Offline Optimal Approach (OPT): OPT is assumed to
know all future information in advance and can solve the
offline optimal solution with the optimal cost.

For the hyper-parameters setting of these benchmarks, we
use a random search approach [30] in the training set to deter-
mine the optimal hyper-parameters. These hyper-parameters
include the stable SoC level and weight of cost for LYA [13];
the prediction window size for MPC [6]; the control threshold
for TOA [11]; the learning rate, number of neurons, batch size,
discount ratio and ε-greedy parameters for DQN [29].

The numerical study is performed by CVXPY 1.3.1 [31]
and COPT solver 6.5.5 [32] on a desktop with Intel Core i5-
11400F CPU and 16G RAM.

C. Performance Evaluation

Fig. 3 visualizes the estimated value function. Notably, in
Fig. 3(a) where γ = 0.6, the value function is convex and
reaches the minimum when SoC is approximately 700 KWh.
This suggests that our method aims to maintain the SoC around
700 KWh to balance risks associated with electricity shortage
and surplus. The curve’s gradient when SoC is small is steeper
than that when SoC is large, which indicates the electricity
shortage risk outweighs the surplus risk. Fig. 3(b) further
illustrates the impact of parameter γ on the value function
estimation. We can discern that with γ = 0, the value function
is minimized when SoC is roughly 900 KWh, indicating a
large SoC is preferred to avoid shortage cost. However, as γ

increases, the SoC minimizing the value function decreases. It
indicates that when our algorithm gives greater consideration
to future costs (reflected by a higher γ ), a more symmetrical
value function curve is better for balancing the risks of
electricity shortage and surplus.

Figure 4 provides a comprehensive performance evaluation
across various datasets. In particular, Figs. 4(a), 4(b), and 4(c)
showcase the accumulated costs incurred over 2,000 time steps
by seven distinct methodologies. Notably, the GA method
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Fig. 4. Cost Evolution (C = 1000KWh).

TABLE I
PERFORMANCE EVALUATION WITH CAISO DATASET

incurs the highest cost across all three datasets. This sub-
optimal performance can be attributed to GA’s inability to
effectively harness price information. Using current price data,
both the TOA and Lyapunov techniques manage to reduce
cumulative costs. In contrast, our proposed OSC method,
which utilizes value function estimation from historical data,
not only outperforms these but even exceeds the capabil-
ities of the MPC method. Compared with DQN, a large
model with considerably more parameters to be trained, our
approach can learn the optimal control policy more effi-
ciently with limited data, leading to superior performance
outcomes.

To provide a deeper quantitative insight, we evaluate
the performance of various methods with different storage
capacities. As demonstrated by Table I, within the CAISO
dataset, our method surpasses the top-performing benchmark,
LYA, by achieving an average cost reduction of 3.7%.
In the SDWPF dataset, denoted by Table II, our method
stands out particularly at storage capacities of 750 KWh and

TABLE II
PERFORMANCE EVALUATION WITH SDWPF DATASET

TABLE III
PERFORMANCE EVALUATION WITH SCADA DATASET

TABLE IV
PERFORMANCE EVALUATION FOR DIFFERENT MONTHS

1,000 KWh, realizing a 1% average cost decrement. Even
with 500 KWh storage, our approach’s cost is marginally
greater than the top benchmark MPC, with a mere 0.1%
difference. Further, Table III emphasizes that, in comparison
to the leading benchmark DQN, our method boasts an average
performance enhancement of 2.8%, underscoring its excep-
tional efficacy with different storage sizes and wind power
scenarios.

We further assess the temporal robustness of our algo-
rithm. Specifically, we conducted evaluations across varied
time spans at a storage size of 1,000 KWh within the
CAISO dataset. Table IV reveals that during May, June, and
September, our approach outstrips the best benchmarks by
margins ranging from 2% to 3%. In April, it surpassed the best
LYA benchmark with a notable 4.3% cost improvement. Even
more impressively, during the months of July and August,
we observed performance enhancements exceeding 7%. These
results affirm the consistent and superior performance of our
algorithm across diverse time periods.

Fig. 5 depicts the effects of the discretization level M.
Specifically, Fig. 5(a) presents the estimated value function
curves with different M. It can be observed that, when M =
1, the value function is just a linear function, and as M
increases, the value function approaches the optimal curve
fast in a piecewise linear fashion. Fig. 5(b) illustrates how
M influences the algorithm’s economic and computational
performance. As M increases, the resulting cost gradually
reduces and converges, and the computation time increases
swiftly.
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Fig. 5. Price of Discretization.

Fig. 6. Value of Self-improving Algorithm.

Fig. 6 showcases the effectiveness of the self-improving
algorithm. In particular, Fig. 6(a) indicates that, the self-
improving algorithm can continuously collect data during
the control process and iteratively refine the value function
estimation. Meanwhile, a small amount of data with Ns = 100
(which can be collected approximately in 8 hours) can render
the value function estimation rather accurate, which demon-
strates the effectiveness of our approach. Fig. 6(b) further
indicates that the cost can be well reduced with more collected
data.

VII. CONCLUSION

In this paper, we propose a one-shot online storage control
algorithm based on the MDP theory. To tackle the chal-
lenges from computational intractability and the limitations
of distribution information, we implement the online algo-
rithm leveraging limited data with theoretical performance
guarantees. To promote continuous learning from new data,
we further design a self-improving online algorithm based on
the online learning scheme. Theoretical results highlight the
asymptotic optimality of our approach. Numerical study based
on field data further verifies the remarkable performance of
our algorithm.

Our work opens up avenues for extension in various direc-
tions. In terms of methodology enhancement, there is room for
developing improved value function approximation techniques
that offer lower approximation errors and enhanced regret
performance. As for the practical application of our algorithm,
it would be very interesting and meaningful to implement
this approach for smart grid problems with more complex
decision spaces, such as distributed storage control, voltage
control in distribution networks, and electric vehicle charging
scheduling.

APPENDIX

A. Modeling Details of Wind Power Mismatch Costs

In this section, we introduce the detailed structure of
mismatch costs to justify our cost modeling. Specifically, the
mismatch cost ct at time t consists of the shortage cost c−

t and
excess cost c+

t as follows:

ct = c−
t + c+

t . (56)

We introduce these two costs as follows:
• Shortage Cost c−

t : It consists of two parts: the shortage
energy payment c−,e

t and shortage penalty c−,p
t . The

shortage energy payment is charged since the supplied
energy is below the required amount. Therefore, the wind
farm cannot get all payment of full supply which is
stipulated in the contract, but to subtract the shortage
energy payment. Specifically, such payment is linear to
the shortage amount and satisfies:

c−,e
t = p−,e(ŵt − gt

)+
, (57)

where p−,e is unit electricity price at time t; ŵt and
gt denote the required wind power supply and actual
wind power supply (after storage control), respectively.
Also, an additional penalty cost c−,p

t of deviation will be
charged as follows:

c−,p
t = p−,p((1 − α−)

ŵt − gt
)+

, (58)

where p−,p denotes the unit penalty price of shortage, α−
is the allowed shortage ratio (0 ≤ α− ≤ 1). It indicates
that the penalty cost will be charged when the real supply
is below 1 − α− of requirement. Therefore, the shortage
cost c−

t satisfies:

c−
t = p−,e(ŵt − gt

)+ + p−,p((1 − α−)
ŵt − gt

)+
. (59)

If the unit energy cost p−,e is significantly larger than
penalty cost p−,p, or the allowed shortage ratio α− is
small, c−

t can be approximated by the following one-side
linear form:

c−
t ≈ (

p−,e + p−,p)(ŵt − gt
)+ = p−(

ŵt − gt
)+

, (60)

which is consistent with the form in our paper. We also
demonstrate that this is not a strong assumption. For
comparing the unit energy cost p−,e and the unit penalty
cost p−,p, [33] and [34] indicates the penalty price is
much lower than the energy price. Also, for the value of
α−, [33] assumes α− = 0.04, and [35] assumes α = 0.
It means that α is relatively small in practice. This is
particularly true because of the improving accuracy of
power prediction, the deviation of wind power prediction
is significantly reduced [21]. Hence a higher wind power
stability is preferred and required.

• Excess Cost c+
t : This cost is dependent on the setting

of whether wind curtailment is allowed. If it is allowed,
then the excess cost is referred to the wind curtailment
cost [2], which is linear to the excess amount with the
following form:

c+
t = p+,w

t
(
gt − ŵt

)+
, (61)
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where p+,w
t denotes the unit wind curtailment cost. Then,

it is exactly the same one-side linear form as our model.
Otherwise, the power grid will accept the abundant wind
power but charges the excess penalty cost. The excess
cost c+

t then satisfies:

c+
t = −p+,e(gt − ŵt

)+ + p+,p(gt − (
1 + α+)

ŵt
)+

, (62)

where p+,e denotes the unit energy price of the excess
wind power, p+,p characterizes the unit excess penalty
cost, and α+ is the allowed excess ratio α ≥ 1, which
indicates that the penalty cost will be charged when
the real supply is above 1 + α+ of requirement. If the
unit energy price p+,e is significantly larger than the
penalty price p+,p, or α+ is small, then c+

t can be
approximated by:

c+
t ≈ (−p+,e + p+,p)(gt − ŵt

)+ = p+(
gt − ŵt

)+
. (63)

Similarly, according to [2] and [35], such approximation
holds without strong assumption.

By combining the shortage cost and the excess cost, we can
derive the total cost with the same form in our model:

ct = p−(
ŵt − gt

)+ + p+(
gt − ŵt

)+
. (64)

B. Proof Sketch for Theorem 2

We define the estimation error δk = F̃( kC
M ) − F∗( kC

M ). The
notations F̃( kC

M ) and F∗( kC
M ) are represented by the simplified

forms F̃(k) and F∗(k), respectively. Then for any k ≤ M, we
can derive the following condition:

|F̃(k) − F∗(k)|

≤
∣∣∣∣

1

Ns

Ns∑

i=1

min
�i

(
c(qi, gi) + γ F∗

(
kC

M
+ �i

))

−
W∑

i=1

αi min
�i

(
c(qi, gi) + γ F∗

(
kC

M
+ �i

))∣∣∣∣

+ γ
∣∣F̃(k) − F∗(k)

∣∣. (65)

Given any fixed k, min�i((c(qi, gi) + γ F∗( kC
M + �i))) is

essentially a function of qi. We denote it as yi for simplicity.
Then for each k, |F̃(k) − F∗(k)| can be transformed into:

|F̃(k) − F∗(k)| ≤ 1

1 − γ

∣∣∣∣∣
1

Ns

Ns∑

i=1

yi − y

∣∣∣∣∣
. (66)

Since all qi’s are i.i.d., for each k, we can derive the
following condition based on the Hoeffding’s inequality [36]:

P

(∣∣∣∣
∣

1

Ns

Ns∑

i=1

yi − y

∣∣∣∣
∣
≥ ε

)

≤ 2 exp

(−2Nsε
2

b2

)
, (67)

where b = pmax(C+maxi(ŵi−wi))
1−γ

, which is the derived upper
bound of yi following standard mathematical manipulations.
The constant pmax = max(maxq∈Q p+, maxq∈Q p−).

Combining conditions (67) and (66) yields our results. �

C. Proof Sketch for Theorem 3

For the simplicity of symbolic representation, we define
[M] = {0, 1, . . . , M − 1, M}. For any k < M, the following
condition holds:

|F̃(k) − F∗(k)|
≤

∣∣∣
∣

1

Ns

∑Ns

i=1

[
min

�i∈[M]

(
c(qi, gi) + γ F̃

(
kC

M
+ �i

))

− min
�i∈[M]

(
c(qi, gi) + γ F∗

(
kC

M
+ �i

))]∣∣∣∣

+
∣∣∣∣

1

Ns

Ns∑

i=1

[
min

�i∈[M]

(
c(qi, gi) + γ F∗

(
kC

M
+ �i

))

−
Ns∑

i=1

min
�i∈[0,C]

(
c(qi, gi) + γ F∗

(
kC

M
+ �i

))]∣∣∣∣,

(68)

where each �i satisfies condition (33).
In (68), the first absolute term can be bounded following the

routine in the proof for Theorem 2, and the second term can be
bounded by checking the Lipschitz continuity condition of the
value function F∗’s gradient. Combining the two terms yields:

∣∣F̃(k) − F∗(k)
∣∣

≤ γ
∣∣F̃

(
k∗) − F∗(k∗)∣∣ + C

M

(
2pmax + LC

M

)
, (69)

where L denotes the Lipschitz constant of the value function
F∗’s gradient. Based on simple substitution, we can derive the
final result. �

D. Proof Sketch for Theorem 4

We first derive the one-step regret bound, then conclude the
cumulative regret bound. Specifically, for each i, we make the
following definition:

�1
i = arg min

�∈[0,C]

(
ci(�) + γ F∗(SoCt + �)

)
, (70)

�2
i = arg min

�∈[M]

(
ci(�) + γ F∗(SoCt + �)

)
, (71)

�3
i = arg min

�∈[M]

(
ci(�) + γ F̃(SoCt + �)

)
, (72)

where ci(·) is the penalty cost function with state qi.
We characterize the upper bound of E[|c(�1

i ) − c(�3
i )|]

as follow:

E

[
|c
(
�1

i

)
− c

(
�3

i

)
|
]

≤ pmaxE

(
|�1

i − �2
i | + |�3

i − �2
i |
)
. (73)

Specifically, we first derive the bound of |�1
i −�3

i |. Due to
the discretization, the following condition holds:

|�1
i − �2

i | ≤ C

M
. (74)

Since the estimated value function F̃(k) depends on random
samples. Therefore, F̃(k) is also a random variable. Based on
Theorem 2, we can derive the following condition:

E
[|F̃(k) − F∗(k)|] ≤

√
πb2

2Ns(1 − γ )2
,∀k ∈ [M]. (75)
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Based on condition (75), we can derive the upper bound of
E[|�3

i − �2
i |] by splitting different situations as follows:

E

[
|�3

i − �2
i |
]

≤
√

4γ

μ

4

√
πb2

2Ns(1 − γ )2
+ 2C

M
. (76)

Combining (74), (76), and the physical limits of function
ci(·) yields the one-step result. Taking the expectation on all
possible qt, and conducting standard mathematical manipula-
tion across all time yield our result. �

E. Proof Sketch for Theorem 5

Eliminating the terms involving M, the one-step regret given
sample size Ns satisfies:

E

[
|c
(
�1

i

)
− c

(
�3

i

)
|
]

≤ pmax

⎛

⎝

√
4γ

μ

4

√
πb2

2Ns(1 − γ )2

⎞

⎠. (77)

At t = 1, the sample size is Ns. During the control process,
the available sample size at time t is Ns + t − 1. Thus, the

one-step regret at time t equals O( 4
√

1
N+t−1 ).

Though the resulting SoCs of the online algorithm and
the optimal algorithm during different times t are different,
we can prove that such effects are minor compared with the
one-step regret. By standard mathematical manipulation and
eliminating minor terms, we can derive the cumulative regret
as follows:

Rπ ≤
T∑

t=1

O
(

4

√
1

N + t − 1

)

= O
(

T
4
√

Ns + T

)
. (78)

This concludes our proof. �

F. Guidelines for Storage Sizing

Storage sizing is a pivotal concern within power system
infrastructure investment. The judicious determination of
energy storage size holds the key to striking a balance
between short-term revenue from storage operations and the
long-term amortized investment costs, ultimately leading to
enhanced system efficiency. Due to the physical property of
energy storage, we also take the storage degradation into
consideration. We first introduce how to consider the storage
degradation in our model, and then introduce a storage sizing
algorithm to choose the optimal storage size minimizing the
average storage life-circle cost.

Specifically, there are two ways to consider the degradation
cost in the literature [37]:

• Amortized Investment Cost: The classical and straightfor-
ward method to model degradation cost involves utilizing
the amortized investment costs over the battery’s entire
life cycle [37]. Specifically, with any storage size C, the
system first decides the expected battery life T(C) and the
battery investment cost Q(C). Then, the amortized invest-
ment cost Q(C)/T(C) is adopted to be the degradation
cost. If we include this modeling into our algorithm, we
only need to include the unit degradation cost into the
original cost function ct, i.e.,

ct
(
ŵt, gt

) = p+
t max

(
gt − ŵt, 0

) + p−
t max

(
ŵt − gt, 0

)

+ Q(C)

T(C)
. (79)

Adding this constant does not influence the optimization
structure, hence has no impact on our algorithm.
However, it’s worth noting that this model simplifies
the degradation cost and doesn’t consider the impact
of different storage control policies on the battery’s
life cycle, For example, a policy with more frequent
charging/discharging behaviors will make battery life
shorter, while a less frequent charging/discharging policy
can potentially increase the battery life.

• Refined Mileage Degradation Cost: To capture the physi-
cal property of storage degradation, recent literature often
uses the mileage-styled degradation cost [38], [39]. These
modeling assumes there is a fixed usage mileage M(C)

of the storage and an investment cost Q(C) regarding the
storage size C. At each time slot t, the degradation cost
mt satisfies:

mt = Q(C)
(
α1v+

t + α2v−
t + α3

)
�t

M(C)
, (80)

where v+
t and v−

t denote the charging and discharging
rates of storage at time t. Parameters α1, α2 represent the
degradation ratios of charging and discharging, respec-
tively. α3 denotes the time-degradation ratio, and �t is
the length of a single time slot. In [39], a more refined
degradation cost is proposed by setting α1, α2 and α3
to be time-dependent. We can follow a similar way to
incorporate the mileage degradation cost into our model.
Specifically, the cost function ct at time t should be
modified into:

ct
(
ŵt, gt

) = p+
t max

(
gt − ŵt, 0

) + p−
t max

(
ŵt − gt, 0

)

+ Q(C)
(
α1v+

t + α2v−
t + α3

)
�t

M(C)
. (81)

It just slightly changes the form of the cost function, and
does not influence the piecewise linearity of the objective
function, as well as our whole algorithm.

For the storage capacity degradation, we only need to set the
storage capacity C to be a time-dependent Ct. Since the storage
degradation process is much slower than the storage control
process, we can assume the storage capacity is consistent in a
single time slot. Only when the storage capacity is significantly
changed, we then adopt the new capacity Ct and run the whole
algorithm to get the updated control policy, which does not
influence the computational efficiency.

By the investment and degradation cost modeling, we can
propose an optimal storage sizing approach. The target of
storage sizing is to minimize the total cost considering both
the investment/degradation costs and the revenue of storage
control. However, calculating the storage control revenue often
requires simulating a lot of future scenarios, which is time-
consuming [38], [39]. We highlight that we can use the
concept of storage value function in our paper to efficiently
evaluate such revenue.
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Fig. 7. Example of the cost function F(SoC).

Specifically, by considering the cost function Eq. (81)
incorporating the degradation cost, the cost value function
F(SoC, C) in our paper characterizes the future discounted
penalty cost with SoC of value SoC and storage size C. An
example of F(SoC, C) is provided in Fig. 7. Specifically, the
x-coordinate is the SoC of storage, and the y-coordinate is
the corresponding discounted penalty cost accumulated in the
future. We can observe that, the value function is convex and
reaches the minimum when SoC is approximately 700 KWh.
This suggests that it is beneficial to maintain the SoC around
700 KWh to balance risks associated with electricity shortage
and surplus. And the value at such point denotes the optimal
cost when equipped with the storage with size C. We use P(C)

to represent such cost, specifically:

P(C) = min
SoC

F(SoC, C). (82)

When C −→ ∞, we know P(C) = 0, which means the
infinite size storage can entirely contain all generation mis-
matches and avoid all penalty costs. And C −→ 0 denotes the
case without storage, and P(C) is maximized. By evaluating
different C’s, we can get different P(C)’s and finally obtain
the whole continuous cost function curve P(C) in terms of C.

Therefore, for a single operation time slot t, we can define
the average cost function P(Ct) equals:

P(Ct) = (1 − γ )P(Ct), (83)

where 1 − γ is the standard normalization factor [40] for the
Markov decision process.

Specifically, denote T(C) as the expected life cycle of the
storage, κ is the amortized maintenance cost of a single
operation period. And Q(C) is the investment cost of a storage
with size C. Then we can solve the following problem to get
the optimal size C∗:

C∗ = arg min
C

1

T

(
T∑

t=1

P(Ct) + κT(C)

)

, (84)

s.t. C1 = C, (85)

Ct = At(C), (86)

where
∑T

t=1 P(Ct) denotes the total penalty and investment
cost considering storage degradation; κT(C) denotes the total
maintenance cost.

At(C) is the capacity time-degradation curve of storage in
terms of time t, which can be obtained by checking the stor-
age’s technical parameters. By solving this problem (84)–(86),
we can decide the optimal storage size of minimizing the
overall cost.
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